-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprinter.py
132 lines (123 loc) · 6.74 KB
/
printer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import pandas as pd
import argparse
def main(args):
test_set = ["omniglot", "aircraft", "cu_birds", "dtd", "quickdraw", "fungi", "traffic_sign", "mscoco"]
df = pd.read_csv(args.log_path)
all_top1, all_loss, all_time = [], [], []
all_gce, all_ece, all_ace, all_tace, all_sce, all_rmsce= [], [], [], [], [], []
gce_latex = "GCE & "
ece_latex = "ECE & "
ace_latex = "ACE & "
tace_latex = "TACE & "
sce_latex = "SCE & "
rmsce_latex = "RMSCE & "
for dataset_name in test_set:
tot_tasks = len(df.loc[df["dataset"]==dataset_name])
if(tot_tasks>0):
print("Dataset:", dataset_name)
print("Tot-Tasks:", tot_tasks)
if("task-top1" in df.columns):
top1 = df.loc[df["dataset"]==dataset_name]["task-top1"]
top1_mean = top1.mean()
top1_confidence = (196.0 * np.std(top1/100.)) / np.sqrt(len(top1))
all_top1.append(top1_mean)
print(f"TOP-1: {top1_mean:.2f} +- {top1_confidence:.2f}")
if("task-loss" in df.columns):
loss = df.loc[df["dataset"]==dataset_name]["task-loss"]
loss_mean = loss.mean()
loss_confidence = (196.0 * np.std(loss/100.)) / np.sqrt(len(loss))
all_loss.append(loss_mean)
print(f"Loss: {loss_mean:.5f} +- {loss_confidence:.2f}")
if("task-gce" in df.columns):
gce = df.loc[df["dataset"]==dataset_name]["task-gce"]
gce_mean = gce.mean()
gce_confidence = (196.0 * np.std(gce/100.)) / np.sqrt(len(gce))
all_gce.append(gce_mean)
if(args.print_latex): gce_latex += str(round(gce_mean,1))+"$\pm$"+str(round(gce_confidence,1)) + " & "
print(f"GCE: {gce_mean:.2f} +- {gce_confidence:.2f}")
if("task-ece" in df.columns):
ece = df.loc[df["dataset"]==dataset_name]["task-ece"]
ece_mean = ece.mean()
ece_confidence = (196.0 * np.std(ece/100.)) / np.sqrt(len(ece))
all_ece.append(ece_mean)
if(args.print_latex): ece_latex += str(round(ece_mean,1))+"$\pm$"+str(round(ece_confidence,1)) + " & "
print(f"ECE: {ece_mean:.2f} +- {ece_confidence:.2f}")
if("task-ace" in df.columns):
ace = df.loc[df["dataset"]==dataset_name]["task-ace"]
ace_mean = ace.mean()
ace_confidence = (196.0 * np.std(ace/100.)) / np.sqrt(len(ace))
all_ace.append(ace_mean)
if(args.print_latex): ace_latex += str(round(ace_mean,1))+"$\pm$"+str(round(ace_confidence,1)) + " & "
print(f"ACE: {ace_mean:.2f} +- {ace_confidence:.2f}")
if("task-tace" in df.columns):
tace = df.loc[df["dataset"]==dataset_name]["task-tace"]
tace_mean = tace.mean()
tace_confidence = (196.0 * np.std(tace/100.)) / np.sqrt(len(tace))
all_tace.append(tace_mean)
if(args.print_latex): tace_latex += str(round(tace_mean,1))+"$\pm$"+str(round(tace_confidence,1)) + " & "
print(f"TACE: {tace_mean:.2f} +- {tace_confidence:.2f}")
if("task-sce" in df.columns):
sce = df.loc[df["dataset"]==dataset_name]["task-sce"]
sce_mean = sce.mean()
sce_confidence = (196.0 * np.std(sce/100.)) / np.sqrt(len(sce))
all_sce.append(sce_mean)
if(args.print_latex): sce_latex += str(round(sce_mean,1))+"$\pm$"+str(round(sce_confidence,1)) + " & "
print(f"SCE: {sce_mean:.2f} +- {sce_confidence:.2f}")
if("task-rmsce" in df.columns):
rmsce = df.loc[df["dataset"]==dataset_name]["task-rmsce"]
rmsce_mean = rmsce.mean()
rmsce_confidence = (196.0 * np.std(rmsce/100.)) / np.sqrt(len(rmsce))
all_rmsce.append(rmsce_mean)
if(args.print_latex): rmsce_latex += str(round(rmsce_mean,1))+"$\pm$"+str(round(rmsce_confidence,1)) + " & "
print(f"RMSCE: {rmsce_mean:.2f} +- {rmsce_confidence:.2f}")
if("task-tot-images" in df.columns):
values = df.loc[df["dataset"]==dataset_name]["task-tot-images"]
values_mean = values.mean()
print(f"Avg-Images: {values_mean:.1f}")
if("task-way" in df.columns):
values = df.loc[df["dataset"]==dataset_name]["task-way"]
values_mean = values.mean()
print(f"Avg-Way: {values_mean:.1f}")
if("task-avg-shot" in df.columns):
values = df.loc[df["dataset"]==dataset_name]["task-avg-shot"]
values_mean = values.mean()
print(f"Avg-Shot: {values_mean:.1f}")
if("time" in df.columns):
tot_time = df.loc[df["dataset"]==dataset_name]["time"].sum()
all_time.append(tot_time)
print(f"Time: {tot_time/60.0:.1f} min")
print("")
# Finished, printing overall statistics
print("-------------------")
if(len(all_top1)>0): print(f"TOP-1 ... {np.mean(all_top1):.1f}%")
if(len(all_loss)>0): print(f"Loss .... {np.mean(all_loss):.5f}")
if(len(all_gce)>0): print(f"GCE ..... {np.mean(all_gce):.1f}%")
if(len(all_ece)>0): print(f"ECE ..... {np.mean(all_ece):.1f}%")
if(len(all_ace)>0): print(f"ACE ..... {np.mean(all_ace):.1f}%")
if(len(all_tace)>0): print(f"TACE .... {np.mean(all_tace):.1f}%")
if(len(all_sce)>0): print(f"SCE ..... {np.mean(all_sce):.1f}%")
if(len(all_rmsce)>0): print(f"RMSCE ... {np.mean(all_rmsce):.1f}%")
if(len(all_time)>0): print(f"Time .... {np.sum(all_time)/60.0:.1f} min, {(np.sum(all_time)/60.0)/60.0:.1f} hour")
print("-------------------")
if(args.print_latex):
# Removing last char and adding new-line symbol
gce_latex = gce_latex[:-2] + "\\" + "\\"
ece_latex = ece_latex[:-2] + "\\" + "\\"
ace_latex = ace_latex[:-2] + "\\" + "\\"
tace_latex = tace_latex[:-2] + "\\" + "\\"
sce_latex = sce_latex[:-2] + "\\" + "\\"
rmsce_latex = rmsce_latex[:-2] + "\\" + "\\"
print("\nLatex strings:")
print(gce_latex)
print(ece_latex)
print(ace_latex)
print(tace_latex)
print(sce_latex)
print(rmsce_latex)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--log_path", default="./log.csv", help="Path to CSV file with the test log.")
parser.add_argument('--print_latex', dest='print_latex', action='store_true', help="Print latex strings.")
args = parser.parse_args()
main(args)