-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmime.py
311 lines (279 loc) · 14.1 KB
/
mime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from builtins import range
import sys, pdb, os
import numpy as np
try:
import pickle
except ImportError:
import cPickle as pickle
import tensorflow as tf
#import sonnet as snt
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import binarize
import mime_util
def build_model(options):
if options['emb_activation'] == 'sigmoid':
emb_activation = tf.nn.sigmoid
elif options['emb_activation'] == 'tanh':
emb_activation = tf.nn.tanh
else:
emb_activation = tf.nn.relu
if options['order_activation'] == 'sigmoid':
order_activation = tf.nn.sigmoid
elif options['order_activation'] == 'tanh':
order_activation = tf.nn.tanh
else:
order_activation = tf.nn.relu
if options['visit_activation'] == 'sigmoid':
visit_activation = tf.nn.sigmoid
elif options['visit_activation'] == 'tanh':
visit_activation = tf.nn.tanh
else:
visit_activation = tf.nn.relu
W_emb_dx = tf.get_variable('W_emb_dx', shape=(options['num_dx'], options['dx_emb_size']), dtype=tf.float32)
W_emb_rx = tf.get_variable('W_emb_rx', shape=(options['num_rx'], options['rx_emb_size']), dtype=tf.float32)
W_emb_pr = tf.get_variable('W_emb_pr', shape=(options['num_pr'], options['pr_emb_size']), dtype=tf.float32)
dx_var = tf.placeholder(tf.int32, shape=(None, options['batch_size'], options['max_dx_per_visit']), name='dx_var')
rx_var = tf.placeholder(tf.int32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['max_rx_per_dx']), name='rx_var')
pr_var = tf.placeholder(tf.int32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['max_pr_per_dx']), name='pr_var')
dx_label = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['num_dx']), name='dx_label')
rx_label = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['num_rx']), name='rx_label')
pr_label = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['num_pr']), name='pr_label')
dx_mask = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit']), name='dx_mask')
rx_mask = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['max_rx_per_dx']), name='rx_mask')
pr_mask = tf.placeholder(tf.float32, shape=(None, options['batch_size'], options['max_dx_per_visit'], options['max_pr_per_dx']), name='pr_mask')
dx_visit = tf.nn.embedding_lookup(W_emb_dx, tf.reshape(dx_var, (-1, options['max_dx_per_visit'])))
dx_visit = emb_activation(dx_visit)
dx_visit = tf.reshape(dx_visit, (-1, options['dx_emb_size']))
rx_visit = tf.nn.embedding_lookup(W_emb_rx, tf.reshape(rx_var, (-1, options['max_rx_per_dx'])))
rx_visit = emb_activation(rx_visit)
rx_visit = rx_visit * tf.reshape(rx_mask, (-1, options['max_rx_per_dx']))[:, :, None] ####Masking####
rx_visit = tf.reduce_sum(rx_visit, axis=1)
W_dr = tf.keras.layers.Dense(options['rx_emb_size'], activation=order_activation, name='W_dr')
dr_visit = W_dr(dx_visit)
dr_visit = dr_visit * rx_visit
pr_visit = tf.nn.embedding_lookup(W_emb_pr, tf.reshape(pr_var, (-1, options['max_pr_per_dx'])))
pr_visit = emb_activation(pr_visit)
pr_visit = pr_visit * tf.reshape(pr_mask, (-1, options['max_pr_per_dx']))[:, :, None] ####Masking####
pr_visit = tf.reduce_sum(pr_visit, axis=1)
W_dp = tf.keras.layers.Dense(options['pr_emb_size'], activation=order_activation, name='W_dp')
dp_visit = W_dp(dx_visit)
dp_visit = dp_visit * pr_visit
dx_obj = dx_visit + dr_visit + dp_visit
W_dx = tf.keras.layers.Dense(options['dxobj_emb_size'], activation=order_activation, name='W_dxobj')
dx_obj = W_dx(dx_obj)
pre_visit = tf.reshape(dx_obj, (-1, options['max_dx_per_visit'], options['dxobj_emb_size']))
pre_visit = pre_visit * tf.reshape(dx_mask, (-1, options['max_dx_per_visit']))[:, :, None] ####Masking####
visit = tf.reduce_sum(pre_visit, axis=1)
seq_visit = tf.reshape(visit, (-1, options['batch_size'], options['visit_emb_size']))
seq_length = tf.placeholder(tf.int32, shape=(options['batch_size']), name='seq_length')
rnn_cell = tf.keras.layers.GRUCell(options['rnn_size'], name='emb2rnn')
rnn2pred = tf.keras.layers.Dense(options['output_size'], activation=tf.nn.sigmoid, name='rnn2pred')
rnn2aux_dx = tf.keras.layers.Dense(options['num_dx'], name='rnn2aux_dx')
rnn2aux_rx = tf.keras.layers.Dense(options['num_rx'], name='rnn2aux_rx')
rnn2aux_pr = tf.keras.layers.Dense(options['num_pr'], name='rnn2aux_pr')
_, final_states = tf.nn.dynamic_rnn(rnn_cell, seq_visit, dtype=tf.float32, time_major=True, sequence_length=seq_length)
preds = tf.squeeze(rnn2pred(final_states))
labels = tf.placeholder(tf.float32, shape=(options['batch_size']), name='labels')
loss = -tf.reduce_mean(labels * tf.log(preds + 1e-10) + (1. - labels) * tf.log(1. - preds + 1e-10))
aux_dx_preds = rnn2aux_dx(dx_obj) * tf.reshape(dx_mask, (-1, 1))
aux_dx_loss = tf.losses.softmax_cross_entropy(tf.reshape(dx_label, (-1, options['num_dx'])), aux_dx_preds)
aux_rx_preds = rnn2aux_rx(dx_obj) * tf.reshape(dx_mask, (-1, 1))
aux_rx_loss = tf.losses.sigmoid_cross_entropy(tf.reshape(rx_label, (-1, options['num_rx'])), aux_rx_preds)
aux_pr_preds = rnn2aux_pr(dx_obj) * tf.reshape(dx_mask, (-1, 1))
aux_pr_loss = tf.losses.sigmoid_cross_entropy(tf.reshape(pr_label, (-1, options['num_pr'])), aux_pr_preds)
input_tensors = (dx_var, rx_var, pr_var)
label_tensors = (dx_label, rx_label, pr_label, labels)
mask_tensors = (dx_mask, rx_mask, pr_mask)
loss_tensors = (aux_dx_loss, aux_rx_loss, aux_pr_loss, loss)
return input_tensors, label_tensors, mask_tensors, loss_tensors, seq_length, preds
def run_test(seqs, label_seqs, sess, preds_T, input_PHs, label_PHs, mask_PHs, seq_length_PH, loss_T, options):
all_losses = []
all_preds = []
all_labels = []
batch_size = options['batch_size']
for idx in range(int(len(label_seqs) / batch_size)):
batch_x = seqs[idx*batch_size:(idx+1)*batch_size]
batch_y = label_seqs[idx*batch_size:(idx+1)*batch_size]
inputs, _, masks, seq_length = mime_util.st_preprocess_hf_aux(batch_x, options)
preds, loss = sess.run([preds_T, loss_T],
feed_dict={
input_PHs[0]:inputs[0],
input_PHs[1]:inputs[1],
input_PHs[2]:inputs[2],
mask_PHs[0]:masks[0],
mask_PHs[1]:masks[1],
mask_PHs[2]:masks[2],
label_PHs[-1]:batch_y,
seq_length_PH:seq_length,
}
)
all_losses.append(loss)
all_preds.extend(list(preds))
all_labels.extend(batch_y)
auc = roc_auc_score(all_labels, all_preds)
aucpr = average_precision_score(all_labels, all_preds)
accuracy = (np.array(all_labels) == np.squeeze(binarize(np.array(all_preds).reshape(-1, 1), threshold=.5))).mean()
return np.mean(all_losses), auc, aucpr
def train(
input_path='',
batch_size=100,
num_iter=100,
eval_period=10,
num_eval=100,
rnn_size=256,
output_size=1,
learning_rate=1e-3,
output_path='',
random_seed=1234,
split_seed=1234,
emb_activation='sigmoid',
order_activation='sigmoid',
visit_activation='sigmoid',
num_dx=100,
num_rx=100,
num_pr=100,
dx_emb_size=128,
rx_emb_size=128,
pr_emb_size=128,
dxobj_emb_size=128,
visit_emb_size=128,
max_dx_per_visit=29,
max_rx_per_dx=17,
max_pr_per_dx=10,
regularize=1e-3,
aux_lambda=0.1,
min_threshold=1,
max_threshold=200,
train_ratio=1.0,
association_threshold=0.0,
):
options = locals().copy()
input_PHs, label_PHs, mask_PHs, loss_Ts, seq_length_PH, preds_T = build_model(options)
all_vars = tf.trainable_variables()
L2_loss = tf.constant(0.0, dtype=tf.float32)
for var in all_vars:
if len(var.shape) < 2:
continue
L2_loss += tf.reduce_sum(var ** 2)
optimizer = tf.train.AdamOptimizer(learning_rate=options['learning_rate'])
loss_T = options['aux_lambda'] * (loss_Ts[0] + loss_Ts[1] + loss_Ts[2]) + loss_Ts[3]
minimize_op = optimizer.minimize(loss_T + regularize * L2_loss)
train_seqs, train_labels, valid_seqs, valid_labels, test_seqs, test_labels = mime_util.load_data(
options['input_path'],
min_threshold=options['min_threshold'],
max_threshold=options['max_threshold'],
seed=options['split_seed'],
train_ratio=options['train_ratio'],
association_threshold=options['association_threshold'])
saver = tf.train.Saver(max_to_keep=1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
best_valid_loss = 100000.0
best_test_loss = 100000.0
best_valid_auc = 0.0
best_test_auc = 0.0
best_valid_aucpr = 0.0
best_test_aucpr = 0.0
for train_iter in range(options['num_iter']+1):
batch_x, batch_y = mime_util.sample_batch(train_seqs, train_labels, options['batch_size'])
inputs, labels, masks, seq_length = mime_util.st_preprocess_hf_aux(batch_x, options)
_, preds, losses = sess.run([minimize_op, preds_T, loss_Ts],
feed_dict={
input_PHs[0]:inputs[0],
input_PHs[1]:inputs[1],
input_PHs[2]:inputs[2],
mask_PHs[0]:masks[0],
mask_PHs[1]:masks[1],
mask_PHs[2]:masks[2],
label_PHs[0]:labels[0],
label_PHs[1]:labels[1],
label_PHs[2]:labels[2],
label_PHs[3]:batch_y,
seq_length_PH:seq_length,
}
)
if train_iter > 0 and train_iter % options['eval_period'] == 0:
valid_loss, valid_auc, valid_aucpr = run_test(valid_seqs, valid_labels, sess, preds_T, input_PHs, label_PHs, mask_PHs, seq_length_PH, loss_Ts[-1], options)
if valid_loss < best_valid_loss:
test_loss, test_auc, test_aucpr = run_test(test_seqs, test_labels, sess, preds_T, input_PHs, label_PHs, mask_PHs, seq_length_PH, loss_Ts[-1], options)
best_valid_loss = valid_loss
best_valid_auc = valid_auc
best_valid_aucpr = valid_aucpr
best_test_loss = test_loss
best_test_auc = test_auc
best_test_aucpr = test_aucpr
savePath = saver.save(sess, output_path + '/r' + str(random_seed) + 's' + str(split_seed) + '/model', global_step=train_iter)
print('round:%d, valid_loss:%f, valid_auc:%f, valid_aucpr:%f' % (train_iter, valid_loss, valid_auc, valid_aucpr))
return best_valid_loss, best_test_loss, best_valid_auc, best_test_auc, best_valid_aucpr, best_test_aucpr
if __name__ == '__main__':
input_path = sys.argv[1]
output_path = sys.argv[2]
log_path = sys.argv[3]
num_dx=388
num_rx=99
num_pr=1824
rnn_size=256
dx_emb_size=200
rx_emb_size=dx_emb_size
pr_emb_size=dx_emb_size
dxobj_emb_size=256
visit_emb_size=dxobj_emb_size
max_dx_per_visit=22
max_rx_per_dx=17
max_pr_per_dx=10
emb_activation='relu'
order_activation='relu'
visit_activation='relu'
regularize=1e-4
aux_lambda=0.0
valid_losses = []
test_losses = []
valid_aucs = []
test_aucs = []
valid_aucprs = []
test_aucprs = []
for i in range(1):
tf.set_random_seed(i)
np.random.seed(i)
for j in range(5):
os.makedirs(output_path + '/r' + str(i) + 's' + str(j) + '/')
tf.reset_default_graph()
valid_loss, test_loss, valid_auc, test_auc, valid_aucpr, test_aucpr = train(
input_path=input_path,
output_path=output_path,
batch_size=20,
num_iter=20000,
eval_period=100,
rnn_size=rnn_size,
num_dx=num_dx,
num_rx=num_rx,
num_pr=num_pr,
dx_emb_size=dx_emb_size,
rx_emb_size=rx_emb_size,
pr_emb_size=pr_emb_size,
dxobj_emb_size=dxobj_emb_size,
visit_emb_size=visit_emb_size,
max_dx_per_visit=max_dx_per_visit,
max_rx_per_dx=max_rx_per_dx,
max_pr_per_dx=max_pr_per_dx,
emb_activation=emb_activation,
order_activation=order_activation,
visit_activation=visit_activation,
regularize=regularize,
aux_lambda=aux_lambda,
random_seed=i,
split_seed=j)
valid_losses.append(valid_loss)
test_losses.append(test_loss)
valid_aucs.append(valid_auc)
test_aucs.append(test_auc)
valid_aucprs.append(valid_aucpr)
test_aucprs.append(test_aucpr)
buf = "valid_loss:%f, test_loss:%f, valid_auc:%f, test_auc:%f, valid_aucpr:%f, test_aucpr:%f" % (valid_loss, test_loss, valid_auc, test_auc, valid_aucpr, test_aucpr)
with open(log_path + '.log', 'a') as outfd: outfd.write(buf + '\n')
print(buf)
buf = "mean_valid_loss:%f, mean_test_loss:%f, mean_valid_auc:%f, mean_test_auc:%f, mean_valid_aucpr:%f, mean_test_aucpr:%f" % (np.mean(valid_losses), np.mean(test_losses), np.mean(valid_aucs), np.mean(test_aucs), np.mean(valid_aucprs), np.mean(test_aucprs))
with open(log_path + '.log', 'a') as outfd: outfd.write(buf + '\n')
print(buf)