You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I was trying to follow the complete scRNA-seq tutorial using CellBender h5 out file, by changing adata = anndata_from_h5(mtx_path) (anndata_fromh5 being broadinstitute/CellBender#57).
When I train the solo model I noticed something weird, it looks like it's not working:
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/anndata/_core/anndata.py:1830: UserWarning: Variable names are not unique. To make them unique, call .var_names_make_unique.
utils.warn_names_duplicates("var")
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/scvi/model/_utils.py:287: UserWarning: This dataset has some empty cells, this might fail inference.Data should be filtered with scanpy.pp.filter_cells()
warnings.warn(
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Epoch 267/267: 100%|██████████| 267/267 [13:27<00:00, 2.96s/it, loss=478, v_num=1]
INFO Creating doublets, preparing SOLO model.
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/scvi/external/solo/_model.py:185: RuntimeWarning: divide by zero encountered in log
latent_adata = AnnData(np.concatenate([latent_rep, np.log(lib_size)], axis=1))
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/anndata/_core/anndata.py:1785: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass AnnData(X, dtype=X.dtype, ...) to get the future behavour.
[AnnData(sparse.csr_matrix(a.shape), obs=a.obs) for a in all_adatas],
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Epoch 1/400: 0%| | 1/400 [00:01<08:54, 1.34s/it, loss=nan, v_num=1]
Monitored metric validation_loss = nan is not finite. Previous best value was inf. Signaling Trainer to stop.
Any idea why is that? Thank you!!
The text was updated successfully, but these errors were encountered:
Hi,
Hi, I was trying to follow the complete scRNA-seq tutorial using CellBender h5 out file, by changing adata = anndata_from_h5(mtx_path) (anndata_fromh5 being broadinstitute/CellBender#57).
When I train the solo model I noticed something weird, it looks like it's not working:
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/anndata/_core/anndata.py:1830: UserWarning: Variable names are not unique. To make them unique, call
.var_names_make_unique
.utils.warn_names_duplicates("var")
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/scvi/model/_utils.py:287: UserWarning: This dataset has some empty cells, this might fail inference.Data should be filtered with
scanpy.pp.filter_cells()
warnings.warn(
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Epoch 267/267: 100%|██████████| 267/267 [13:27<00:00, 2.96s/it, loss=478, v_num=1]
INFO Creating doublets, preparing SOLO model.
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/scvi/external/solo/_model.py:185: RuntimeWarning: divide by zero encountered in log
latent_adata = AnnData(np.concatenate([latent_rep, np.log(lib_size)], axis=1))
/home/gtosoni/miniconda3/envs/scvi-env/lib/python3.9/site-packages/anndata/_core/anndata.py:1785: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass
AnnData(X, dtype=X.dtype, ...)
to get the future behavour.[AnnData(sparse.csr_matrix(a.shape), obs=a.obs) for a in all_adatas],
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Epoch 1/400: 0%| | 1/400 [00:01<08:54, 1.34s/it, loss=nan, v_num=1]
Monitored metric validation_loss = nan is not finite. Previous best value was inf. Signaling Trainer to stop.
Any idea why is that? Thank you!!
The text was updated successfully, but these errors were encountered: