-
Notifications
You must be signed in to change notification settings - Fork 4
/
Taxonomy.hpp
1055 lines (941 loc) · 29.8 KB
/
Taxonomy.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef _MOURISL_TAXONOMY_HEADER
#define _MOURISL_TAXONOMY_HEADER
// Partly based on the taxonomy.h file implemented by Florian Breitwieser in Centrifuge.
// This class handles the taxonomy-related information, including taxonomy tree and taxonomy id mappings
#include <map>
#include <utility>
#include <string>
#include <fstream>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include "MapID.hpp"
#include "compactds/SimpleVector.hpp"
#include "compactds/Utils.hpp"
#include "compactds/Tree_Plain.hpp"
using namespace compactds ;
enum
{
RANK_UNKNOWN = 0,
RANK_STRAIN,
RANK_SPECIES,
RANK_GENUS,
RANK_FAMILY,
RANK_ORDER,
RANK_CLASS,
RANK_PHYLUM,
RANK_KINGDOM,
RANK_DOMAIN,
RANK_FORMA,
RANK_INFRA_CLASS,
RANK_INFRA_ORDER,
RANK_PARV_ORDER,
RANK_SUB_CLASS,
RANK_SUB_FAMILY,
RANK_SUB_GENUS,
RANK_SUB_KINGDOM,
RANK_SUB_ORDER,
RANK_SUB_PHYLUM,
RANK_SUB_SPECIES,
RANK_SUB_TRIBE,
RANK_SUPER_CLASS,
RANK_SUPER_FAMILY,
RANK_SUPER_KINGDOM,
RANK_SUPER_ORDER,
RANK_SUPER_PHYLUM,
RANK_TRIBE,
RANK_VARIETAS,
RANK_LIFE,
RANK_MAX
};
struct TaxonomyNode
{
uint64_t parentTid;
uint8_t rank;
uint8_t leaf;
TaxonomyNode(uint64_t _parent_tid, uint8_t _rank, uint8_t _leaf):
parentTid(_parent_tid), rank(_rank), leaf(_leaf) {};
TaxonomyNode(): parentTid(0), rank(RANK_UNKNOWN), leaf(false) {};
};
class Taxonomy
{
private:
MapID<uint64_t> _taxIdMap ;
struct TaxonomyNode *_taxonomyTree; // Use arrays to hold the taxonomy information, more efficient to access
std::string *_taxonomyName ;
MapID<std::string> _seqStrNameMap ;
uint64_t *_seqIdToTaxId ;
size_t _nodeCnt ;
size_t _seqCnt ; // the sequences with taxonomy information
size_t _extraSeqCnt ; // the number of sequences
uint8_t _taxRankNum[RANK_MAX] ;
size_t _rootCTaxId ;// the compact tax Id for the root
void InitTaxRankNum()
{
uint8_t rank = 0;
_taxRankNum[RANK_SUB_SPECIES] = rank;
_taxRankNum[RANK_STRAIN] = rank++;
_taxRankNum[RANK_SPECIES] = rank++;
_taxRankNum[RANK_SUB_GENUS] = rank;
_taxRankNum[RANK_GENUS] = rank++;
_taxRankNum[RANK_SUB_FAMILY] = rank;
_taxRankNum[RANK_FAMILY] = rank;
_taxRankNum[RANK_SUPER_FAMILY] = rank++;
_taxRankNum[RANK_SUB_ORDER] = rank;
_taxRankNum[RANK_INFRA_ORDER] = rank;
_taxRankNum[RANK_PARV_ORDER] = rank;
_taxRankNum[RANK_ORDER] = rank;
_taxRankNum[RANK_SUPER_ORDER] = rank++;
_taxRankNum[RANK_INFRA_CLASS] = rank;
_taxRankNum[RANK_SUB_CLASS] = rank;
_taxRankNum[RANK_CLASS] = rank;
_taxRankNum[RANK_SUPER_CLASS] = rank++;
_taxRankNum[RANK_SUB_PHYLUM] = rank;
_taxRankNum[RANK_PHYLUM] = rank;
_taxRankNum[RANK_SUPER_PHYLUM] = rank++;
_taxRankNum[RANK_SUB_KINGDOM] = rank;
_taxRankNum[RANK_KINGDOM] = rank;
_taxRankNum[RANK_SUPER_KINGDOM] = rank++;
_taxRankNum[RANK_DOMAIN] = rank;
_taxRankNum[RANK_FORMA] = rank;
_taxRankNum[RANK_SUB_TRIBE] = rank;
_taxRankNum[RANK_TRIBE] = rank;
_taxRankNum[RANK_VARIETAS] = rank;
_taxRankNum[RANK_LIFE] = rank;
_taxRankNum[RANK_UNKNOWN] = rank;
}
void ReadTaxonomyTree(std::string taxonomy_fname, std::map<uint64_t, int> &presentTax)
{
std::ifstream taxonomy_file(taxonomy_fname.c_str(), std::ios::in);
std::map<uint64_t, struct TaxonomyNode> tree ;
if(taxonomy_file.is_open()) {
char line[1024];
while(!taxonomy_file.eof()) {
line[0] = 0;
taxonomy_file.getline(line, sizeof(line));
if(line[0] == 0 || line[0] == '#') continue;
std::istringstream cline(line);
uint64_t tid, parent_tid;
char dummy; std::string rank_string;
cline >> tid >> dummy >> parent_tid >> dummy >> rank_string;
if(tree.find(tid) != tree.end()) {
std::cerr << "Warning: " << tid << " already has a parent!" << std::endl;
continue;
}
tree[tid] = TaxonomyNode(parent_tid, GetTaxRankId(rank_string.c_str()), true);
}
taxonomy_file.close();
} else {
std::cerr << "Error: " << taxonomy_fname << " doesn't exist!" << std::endl;
throw 1;
}
// Get the parent nodes related to the present leaf tax nodes
std::map<uint64_t, int> selectedTax ;
for (std::map<uint64_t, int>::iterator iter = presentTax.begin() ; iter != presentTax.end(); ++iter)
{
if (tree.find(iter->first) ==tree.end()) {
std::cerr << "Warning: " << iter->first << " is not in the taxonomy tree" << std::endl;
continue;
}
uint64_t p = iter->first ;
while (1)
{
if (selectedTax.find(p) != selectedTax.end())
break ;
selectedTax[p] = 1;
p = tree[p].parentTid;
}
}
presentTax = selectedTax;
// Clean up the tree
std::map<uint64_t, struct TaxonomyNode> cleanTree;
for (std::map<uint64_t, struct TaxonomyNode>::iterator iter = tree.begin(); iter != tree.end(); ++iter)
{
if (selectedTax.find(iter->first) == selectedTax.end())
continue ;
cleanTree[iter->first] = tree[iter->first] ;
_taxIdMap.Add(iter->first) ;
}
// Flatten the taxonomy tree to the array
_nodeCnt = _taxIdMap.GetSize() ;
_taxonomyTree = new struct TaxonomyNode[_nodeCnt] ;
// The set 0 should be handled by the constructor now.
//memset(_taxonomyTree, 0, sizeof(TaxonomyNode) * _nodeCnt) ;
for (std::map<uint64_t, struct TaxonomyNode>::iterator it = cleanTree.begin() ;
it != cleanTree.end() ; ++it)
{
uint64_t i = _taxIdMap.Map(it->first) ;
_taxonomyTree[i] = it->second ;
}
// We need to split the update parent node here because the order is random.
for (uint64_t i = 0 ; i < _nodeCnt ; ++i)
{
if (_taxIdMap.IsIn(_taxonomyTree[i].parentTid))
{
_taxonomyTree[i].parentTid = _taxIdMap.Map(_taxonomyTree[i].parentTid) ;
_taxonomyTree[ _taxonomyTree[i].parentTid ].leaf = false ;
}
else
{
Utils::PrintLog("WARNING: parent tax ID of %lu does not exist. Set its parent to itself.", GetOrigTaxId(i)) ;
_taxonomyTree[i].parentTid = i ;
}
}
}
void ReadTaxonomyName(std::string fname, std::map<uint64_t, int> &presentTax)
{
std::ifstream taxname_file(fname.c_str(), std::ios::in);
_taxonomyName = new std::string[_nodeCnt] ;
if(taxname_file.is_open()) {
char line[1024];
while(!taxname_file.eof()) {
line[0] = 0;
taxname_file.getline(line, sizeof(line));
if(line[0] == 0 || line[0] == '#') continue;
if(!strstr(line, "scientific name")) continue;
std::istringstream cline(line);
uint64_t tid;
char dummy; std::string scientific_name;
cline >> tid >> dummy >> scientific_name ;
if (presentTax.find(tid) == presentTax.end())
continue ;
uint64_t ctid = _taxIdMap.Map(tid) ;// compact tid
std::string temp;
while(true) {
cline >> temp;
if(temp == "|") break;
scientific_name.push_back('_');
scientific_name += temp;
}
_taxonomyName[ctid] = scientific_name ;
}
taxname_file.close();
} else {
std::cerr << "Error: " << fname << " doesn't exist!" << std::endl;
throw 1;
}
}
// File type: 0-seqid map file. 1-taxonomy file, where the first column is the taxonomy IDs
void ReadPresentTaxonomyLeafs(std::string fname, int filetype, std::map<uint64_t, int> &presentLeafs)
{
std::ifstream seqmap_file(fname.c_str(), std::ios::in);
std::map<std::string, uint64_t> rawSeqNameMap ;
if(seqmap_file.is_open()) {
char line[1024];
while(!seqmap_file.eof()) {
line[0] = 0;
seqmap_file.getline(line, sizeof(line));
if(line[0] == 0 || line[0] == '#') continue;
std::istringstream cline(line);
uint64_t tid;
std::string seqId;
if (filetype == 0)
cline >> seqId >> tid ;
else if (filetype == 1)
cline >> tid ;
presentLeafs[tid] = 0;
}
seqmap_file.close();
} else {
std::cerr << "Error: " << fname << " doesn't exist!" << std::endl;
throw 1;
}
}
// Assume we already have the taxonomy tree loaded
void ReadSeqNameFile(std::string fname, bool conversionTableAtFileLevel)
{
std::ifstream seqmap_file(fname.c_str(), std::ios::in);
std::map<std::string, uint64_t> rawSeqNameMap ;
SimpleVector<size_t> pathA ;
SimpleVector<size_t> pathB ;
if(seqmap_file.is_open()) {
char line[1024];
while(!seqmap_file.eof()) {
line[0] = 0;
seqmap_file.getline(line, sizeof(line));
if(line[0] == 0 || line[0] == '#') continue;
std::istringstream cline(line);
uint64_t tid;
std::string seqIdStr;
cline >> seqIdStr >> tid ;
if (conversionTableAtFileLevel)
{
char buffer[1024] ;
Utils::GetFileBaseName(seqIdStr.c_str(), "fna|fa|fasta|faa", buffer) ;
seqIdStr = buffer ;
}
if (!_seqStrNameMap.IsIn(seqIdStr))
{
_seqStrNameMap.Add(seqIdStr) ;
rawSeqNameMap[seqIdStr] = tid ;
}
else // a sequence ID maps is found in multiple taxonomy IDs.
{
size_t a = rawSeqNameMap[seqIdStr] ;
size_t b = tid ;
// Convert a, b to compact tax ID to work with the taxonomy tree
a = CompactTaxId(a) ;
b = CompactTaxId(b) ;
int sizeA = GetTaxLineagePath(a, pathA) ;
int sizeB = GetTaxLineagePath(b, pathB) ;
int i, j ;
for (i = sizeA - 1, j = sizeB - 1 ; i >= 0 && j >= 0 ; --i, --j)
{
if (pathA[i] != pathB[j])
break ;
}
if (i == sizeA - 1 || pathA[i + 1] != pathB[i + 1])
rawSeqNameMap[seqIdStr] = GetOrigTaxId(_rootCTaxId) ;
else
rawSeqNameMap[seqIdStr] = GetOrigTaxId(pathA[i + 1]) ;
}
}
seqmap_file.close();
} else {
std::cerr << "Error: " << fname << " doesn't exist!" << std::endl;
throw 1;
}
// Map sequence string identifier to compact taxonomy id
_seqIdToTaxId = new uint64_t[ _seqStrNameMap.GetSize() ] ;
for (std::map<std::string, uint64_t>::iterator iter = rawSeqNameMap.begin() ;
iter != rawSeqNameMap.end() ; ++iter)
{
_seqIdToTaxId[ _seqStrNameMap.Map(iter->first) ] = _taxIdMap.Map(iter->second) ;
}
_seqCnt = _seqStrNameMap.GetSize() ;
}
// Whether b is next to a in accession id
bool IsNextSeqName(const char *a, const char *b)
{
int i, j ;
uint64_t id[2] ;
for (i = 0 ; i < 2 ; ++i)
{
const char *s = a ;
if (i == 1)
s = b ;
id[i] = 0 ;
for (j = 0 ; s[j] ; ++j)
if (s[j] >= '0' && s[j] <= '9')
break ;
//if (j > 2) // It's not something like GCFXXXX numbering
// return false ;
for (; s[j] ; ++j)
{
if (s[j] >= '0' && s[j] <= '9')
{
id[i] = id[i] * 10 + s[j] - '0' ;
}
else
break ;
}
}
if (id[1] == id[0] + 1)
return true ;
else
return false ;
}
void SaveString(FILE *fp, std::string &s)
{
size_t len = s.length() ;
fwrite(&len, sizeof(len), 1, fp) ;
fwrite(s.c_str(), sizeof(char), len, fp) ;
}
void LoadString(FILE *fp, std::string &s)
{
size_t len ;
fread(&len, sizeof(len), 1, fp) ;
char *buffer = (char *)malloc(sizeof(char) * (len + 1)) ;
fread(buffer, sizeof(char), len, fp) ;
buffer[len] = '\0' ;
s = buffer ;
free(buffer) ;
}
size_t FindRoot()
{
size_t i ;
for (i = 0 ; i < _nodeCnt ; ++i)
if (_taxonomyTree[i].parentTid == i)
return i ;
return _nodeCnt ;
}
bool IsCanonicalRankNum(uint8_t r) // The taxonomy ranks defined in the TaxonomyPathTable in centrifuge, except for subspecies
{
if (r == RANK_STRAIN //|| r == RANK_SUB_SPECIES
|| r == RANK_SPECIES || r == RANK_GENUS || r == RANK_FAMILY || r == RANK_ORDER
|| r == RANK_CLASS || r == RANK_PHYLUM || r == RANK_KINGDOM || r == RANK_SUPER_KINGDOM
|| r == RANK_DOMAIN)
return true ;
return false ;
}
public:
Taxonomy()
{
_taxonomyTree = NULL ;
_taxonomyName = NULL ;
_seqIdToTaxId = NULL ;
_nodeCnt = 0 ;
_seqCnt = 0 ;
_extraSeqCnt = 0 ;
_rootCTaxId = 0 ;
InitTaxRankNum() ;
}
~Taxonomy()
{
Free() ;
}
void Free()
{
if (_nodeCnt > 0)
{
if (_taxonomyTree != NULL)
delete[] _taxonomyTree ;
if (_taxonomyName != NULL)
delete[] _taxonomyName ;
if (_seqIdToTaxId != NULL)
delete[] _seqIdToTaxId ;
_nodeCnt = 0 ;
}
}
void Init(const char *nodesFile, const char *namesFile, const char *seqIdFile, bool conversionTableAtFileLevel)
{
std::map<uint64_t, int> presentTax;
ReadPresentTaxonomyLeafs(std::string(seqIdFile), 0, presentTax) ;
ReadTaxonomyTree(std::string(nodesFile), presentTax) ;
ReadTaxonomyName(std::string(namesFile), presentTax) ;
ReadSeqNameFile(std::string(seqIdFile), conversionTableAtFileLevel) ;
_rootCTaxId = FindRoot() ;
}
void Init(const char *nodesFile, const char *namesFile)
{
std::map<uint64_t, int> presentTax;
ReadPresentTaxonomyLeafs(std::string(nodesFile), 1, presentTax) ;
ReadTaxonomyTree(std::string(nodesFile), presentTax) ;
ReadTaxonomyName(std::string(namesFile), presentTax) ;
_rootCTaxId = FindRoot() ;
}
const char *GetTaxRankString(uint8_t rank)
{
switch(rank) {
case RANK_STRAIN: return "strain";
case RANK_SPECIES: return "species";
case RANK_GENUS: return "genus";
case RANK_FAMILY: return "family";
case RANK_ORDER: return "order";
case RANK_CLASS: return "class";
case RANK_PHYLUM: return "phylum";
case RANK_KINGDOM: return "kingdom";
case RANK_FORMA: return "forma";
case RANK_INFRA_CLASS: return "infraclass";
case RANK_INFRA_ORDER: return "infraorder";
case RANK_PARV_ORDER: return "parvorder";
case RANK_SUB_CLASS: return "subclass";
case RANK_SUB_FAMILY: return "subfamily";
case RANK_SUB_GENUS: return "subgenus";
case RANK_SUB_KINGDOM: return "subkingdom";
case RANK_SUB_ORDER: return "suborder";
case RANK_SUB_PHYLUM: return "subphylum";
case RANK_SUB_SPECIES: return "subspecies";
case RANK_SUB_TRIBE: return "subtribe";
case RANK_SUPER_CLASS: return "superclass";
case RANK_SUPER_FAMILY: return "superfamily";
case RANK_SUPER_KINGDOM: return "superkingdom";
case RANK_SUPER_ORDER: return "superorder";
case RANK_SUPER_PHYLUM: return "superphylum";
case RANK_TRIBE: return "tribe";
case RANK_VARIETAS: return "varietas";
case RANK_LIFE: return "life";
default: return "no rank";
};
}
uint8_t GetTaxRankId(const char* rank)
{
if(strcmp(rank, "strain") == 0) {
return RANK_STRAIN;
} else if(strcmp(rank, "species") == 0) {
return RANK_SPECIES;
} else if(strcmp(rank, "genus") == 0) {
return RANK_GENUS;
} else if(strcmp(rank, "family") == 0) {
return RANK_FAMILY;
} else if(strcmp(rank, "order") == 0) {
return RANK_ORDER;
} else if(strcmp(rank, "class") == 0) {
return RANK_CLASS;
} else if(strcmp(rank, "phylum") == 0) {
return RANK_PHYLUM;
} else if(strcmp(rank, "kingdom") == 0) {
return RANK_KINGDOM;
} else if(strcmp(rank, "forma") == 0) {
return RANK_FORMA;
} else if(strcmp(rank, "infraclass") == 0) {
return RANK_INFRA_CLASS;
} else if(strcmp(rank, "infraorder") == 0) {
return RANK_INFRA_ORDER;
} else if(strcmp(rank, "parvorder") == 0) {
return RANK_PARV_ORDER;
} else if(strcmp(rank, "subclass") == 0) {
return RANK_SUB_CLASS;
} else if(strcmp(rank, "subfamily") == 0) {
return RANK_SUB_FAMILY;
} else if(strcmp(rank, "subgenus") == 0) {
return RANK_SUB_GENUS;
} else if(strcmp(rank, "subkingdom") == 0) {
return RANK_SUB_KINGDOM;
} else if(strcmp(rank, "suborder") == 0) {
return RANK_SUB_ORDER;
} else if(strcmp(rank, "subphylum") == 0) {
return RANK_SUB_PHYLUM;
} else if(strcmp(rank, "subspecies") == 0) {
return RANK_SUB_SPECIES;
} else if(strcmp(rank, "subtribe") == 0) {
return RANK_SUB_TRIBE;
} else if(strcmp(rank, "superclass") == 0) {
return RANK_SUPER_CLASS;
} else if(strcmp(rank, "superfamily") == 0) {
return RANK_SUPER_FAMILY;
} else if(strcmp(rank, "superkingdom") == 0) {
return RANK_SUPER_KINGDOM;
} else if(strcmp(rank, "superorder") == 0) {
return RANK_SUPER_ORDER;
} else if(strcmp(rank, "superphylum") == 0) {
return RANK_SUPER_PHYLUM;
} else if(strcmp(rank, "tribe") == 0) {
return RANK_TRIBE;
} else if(strcmp(rank, "varietas") == 0) {
return RANK_VARIETAS;
} else if(strcmp(rank, "life") == 0) {
return RANK_LIFE;
} else {
return RANK_UNKNOWN;
}
}
// Also returns compact tax id
size_t GetTaxIdAtParentRank(uint64_t taxid, uint8_t at_rank)
{
while (true) {
const TaxonomyNode& node = _taxonomyTree[taxid] ;
if (node.rank == at_rank) {
return taxid;
} else if (node.rank > at_rank || node.parentTid == taxid) {
return _nodeCnt ;
}
taxid = node.parentTid;
}
return _nodeCnt;
}
size_t GetNodeCount()
{
return _nodeCnt ;
}
size_t GetSeqCount()
{
return _seqCnt ;
}
size_t GetAllSeqCount()
{
return _seqCnt + _extraSeqCnt ;
}
uint64_t GetOrigTaxId(size_t taxid)
{
if (taxid >= _nodeCnt)
return _taxIdMap.Inverse(_rootCTaxId) ;
else
return _taxIdMap.Inverse(taxid) ;
}
uint64_t GetRoot()
{
return _rootCTaxId ;
}
size_t CompactTaxId(uint64_t taxid)
{
if (_taxIdMap.IsIn(taxid))
return _taxIdMap.Map(taxid) ;
else
return _nodeCnt ;
}
uint64_t GetParentTid(uint64_t ctid)
{
return _taxonomyTree[ctid].parentTid ;
}
uint8_t GetTaxIdRank(size_t ctid)
{
if (ctid >= _nodeCnt)
return RANK_UNKNOWN ;
else
return _taxonomyTree[ctid].rank ;
}
std::string GetTaxIdName(size_t ctid)
{
if (ctid < _nodeCnt)
return _taxonomyName[ctid] ;
else
{
std::string tmp("Unknown") ;
return tmp ;
}
}
size_t SeqNameToId(std::string &s)
{
if (!_seqStrNameMap.IsIn(s))
return _seqStrNameMap.GetSize() ;
else
return _seqStrNameMap.Map(s) ;
}
size_t SeqNameToId(const char *s)
{
std::string tmps(s) ;
return SeqNameToId(tmps) ;
}
std::string SeqIdToName(size_t seqid)
{
return _seqStrNameMap.Inverse(seqid) ;
}
// Directly add a seqId(string)
// @return: id ;
size_t AddExtraSeqName(char *s)
{
size_t ret = _seqStrNameMap.Add(s) ;
++_extraSeqCnt ;
return ret ;
}
uint64_t SeqIdToTaxId(size_t seqId)
{
if (seqId < _seqCnt)
return _seqIdToTaxId[seqId] ;
else
return _nodeCnt ;
}
// Get the seq names
void GetSeqNames(std::vector<std::string> &seqNames)
{
_seqStrNameMap.GetElemList(seqNames) ;
}
// Promote the tax id to higher level until number of taxids <= k, or reach LCA
void ReduceTaxIds(const SimpleVector<size_t> &taxIds, SimpleVector<size_t> &promotedTaxIds, int k)
{
int i ;
int taxCnt = taxIds.Size() ;
std::vector< SimpleVector<size_t> > taxPaths ;
promotedTaxIds.Clear() ;
if (taxIds.Size() <= k)
{
promotedTaxIds = taxIds ;
return ;
}
// If there is a tax id not in the tree, we
// give it no rank directly.
for (i = 0 ; i < taxCnt ; ++i)
if (taxIds[i] >= _nodeCnt)
{
promotedTaxIds.PushBack(_nodeCnt) ;
return ;
}
// For each tax level, collect the found tax id on this level
std::map<size_t, int> taxIdsInRankNum[RANK_MAX] ;
for (i = 0 ; i < taxCnt ; ++i)
{
size_t t = taxIds[i];
uint8_t prevRankNum = 0 ;
uint8_t ri ;// rank index
taxIdsInRankNum[prevRankNum][t] = 1 ; // the input is at the base level
do
{
uint8_t rankNum = _taxRankNum[_taxonomyTree[t].rank] ;
if (rankNum != _taxRankNum[RANK_UNKNOWN] && rankNum > prevRankNum)
{
// Handle the case of missing taxonomy level in between
for (ri = rankNum - 1 ; ri > prevRankNum ; --ri)
taxIdsInRankNum[ri][t] = 1 ;
if (taxIdsInRankNum[rankNum].find(t) == taxIdsInRankNum[rankNum].end())
taxIdsInRankNum[rankNum][t] = 1 ;
else
break ; // the upper tax id has already been added, so no need to process anymore
prevRankNum = rankNum ;
}
t = _taxonomyTree[t].parentTid ;
} while (t != _taxonomyTree[t].parentTid) ;
}
// Go through the levels until the tax ids <= k
uint8_t ri ;
for (ri = 0 ; ri < _taxRankNum[RANK_UNKNOWN] ; ++ri)
if ((int)taxIdsInRankNum[ri].size() <= k)
break ;
for (std::map<size_t, int>::iterator iter = taxIdsInRankNum[ri].begin() ;
iter != taxIdsInRankNum[ri].end() ; ++iter)
promotedTaxIds.PushBack(iter->first) ;
if (promotedTaxIds.Size() == 0)
promotedTaxIds.PushBack(_rootCTaxId) ;
}
// Get the taxonomy lineage for two tax IDs
// @return: length to the root
int GetTaxLineagePath(size_t ctid, SimpleVector<size_t> &path)
{
path.Clear() ;
if (ctid >= _nodeCnt)
{
path.PushBack(_rootCTaxId) ;
return 1 ;
}
do
{
path.PushBack(ctid) ;
ctid = _taxonomyTree[ctid].parentTid ;
} while (ctid != _taxonomyTree[ctid].parentTid) ;
return (int)path.Size() ;
}
// Promote the taxIds to the ranks defined in the "IsCanonicalRankNum" function
// dedup: true: remove the duplicated item in the taxIds
void PromoteToCanonicalTaxRank(SimpleVector<size_t> &taxIds, bool dedup)
{
size_t i ;
size_t taxCnt = taxIds.Size() ;
for (i = 0 ; i < taxCnt ; ++i)
{
size_t p = taxIds[i] ;
uint8_t rank = _taxonomyTree[p].rank ;
while ( !IsCanonicalRankNum(rank) )
{
if (p == _taxonomyTree[p].parentTid)
break ;
p = _taxonomyTree[p].parentTid ;
rank = _taxonomyTree[p].rank ;
}
taxIds[i] = p ;
}
if (dedup)
{
std::map<size_t, int> used ;
size_t k = 0 ;
for (i = 0 ; i < taxCnt ; ++i)
{
if (used.find(taxIds[i]) == used.end())
{
taxIds[k] = taxIds[i] ;
++k ;
used[taxIds[i]] = 1 ;
}
}
taxIds.Resize(k) ;
}
}
// @return: Number of children tax ids. childrenTax: compact tax ids below or equal to ctid.
size_t GetChildrenTax(size_t ctid, std::map<size_t, int> &childrenTax)
{
childrenTax.clear() ;
if (ctid >= _nodeCnt)
return 0 ;
size_t i, j ;
size_t t ;
int *visited ; // -1: not visited, 0: not a children, 1: is a children
visited = (int *)malloc(sizeof(int) * _nodeCnt) ;
memset(visited, -1, sizeof(visited[0]) * _nodeCnt) ;
visited[ctid] = 1 ;
SimpleVector<size_t> path ;
for (i = 0 ; i < _nodeCnt ; ++i)
{
t = i ;
path.Clear() ;
while (t != _taxonomyTree[t].parentTid) // It's fine to put the while before
// we only need to add root if ctid is the root
{
if (visited[t] != -1)
break ;
path.PushBack(t) ;
t = _taxonomyTree[t].parentTid ;
}
size_t pathSize = path.Size() ;
int res = visited[t] ;
if (res == -1)
res = 0 ;
for (j = 0 ; j < pathSize ; ++j)
visited[ path[j] ] = res ;
}
for (i = 0 ; i < _nodeCnt ; ++i)
{
if (visited[i] == 1)
childrenTax[i] = 1 ;
}
free(visited) ;
return childrenTax.size() ;
}
// Convert the taxonomy tree structure to a general tree that supports children operations.
// also the converted tree make sure every non-root node has a parent
size_t ConvertToGeneralTree(Tree_Plain &tree)
{
size_t i ;
tree.SetRoot(_rootCTaxId) ;
tree.Init(_nodeCnt) ;
for (i = 0 ; i < _nodeCnt ; ++i)
{
if (i != GetParentTid(i))
tree.AddEdge(i, GetParentTid(i)) ;
}
// Connect the disjoint trees to the root
std::vector<size_t> rootChildrenList = tree.GetChildren( tree.Root() ) ;
std::map<size_t, int> rootChildrenMap ;
size_t rootChildrenListSize = rootChildrenList.size() ;
for (i = 0 ; i < rootChildrenListSize ; ++i)
rootChildrenMap[ rootChildrenList[i] ] = 1 ;
for (i = 0 ; i < _nodeCnt ; ++i)
if (tree.Parent(i) == tree.Root() && rootChildrenMap.find(i) == rootChildrenMap.end())
tree.AddEdge(i, tree.Root()) ;
return _nodeCnt ;
}
// Assume taxIdLength is allocated of size _nodeCnt
void ConvertSeqLengthToTaxLength(std::map<size_t, size_t> seqLength, size_t *taxidLength)
{
size_t i, j ;
std::vector<std::string> seqNames ;
GetSeqNames(seqNames) ;
std::sort(seqNames.begin(), seqNames.end()) ;
for (i = 0 ; i < _nodeCnt ; ++i)
taxidLength[i] = 0 ;
size_t seqNameCnt = seqNames.size() ;
for (i = 0 ; i < seqNameCnt ; )
{
size_t seqId = SeqNameToId(seqNames[i]) ;
size_t len = seqLength[seqId] ;
uint64_t taxid = SeqIdToTaxId(seqId) ;
for (j = i + 1 ; j < seqNameCnt ; ++j)
{
size_t nextSeqId = SeqNameToId(seqNames[j]) ;
if (SeqIdToTaxId(nextSeqId) != taxid
|| !IsNextSeqName(seqNames[j - 1].c_str(),
seqNames[j].c_str()))
break ;
len += seqLength[nextSeqId] ;
}
if (taxid < _nodeCnt)
{
if (len > taxidLength[taxid])
taxidLength[taxid] = len ;
}
//else // ignore the case the sequence is not in the tree.
// taxidLength[taxid] += len ;
i = j ;
}
InferAllTaxLength(taxidLength, true) ;
}
// Infer the length for all taxonomy nodes given the taxidLength
// Some taxidLength are set non-zero, and use them
// to infer the length for intermediate nodes
// lengthFromSeqLength: whether the taxidLength is obtained from seq length information.
void InferAllTaxLength(size_t *taxidLength, bool lengthFromSeqLength)
{
size_t i ;
size_t *taxidCount = (size_t *)calloc(_nodeCnt, sizeof(size_t)) ;// The number of genomes under a tax id. The tax Ids with sequence will be initalized to 1.
size_t *taxidNewLength = (size_t *)calloc(_nodeCnt, sizeof(size_t)) ; // the new length of a taxonomy ID
bool *preset = (bool *)calloc(_nodeCnt, sizeof(bool)) ; // whether the tax id has some lengths precalculated
for (i = 0 ; i < _nodeCnt ; ++i)
{
if (taxidLength[i] != 0)
{
preset[i] = true ;
taxidCount[i] = 1 ;
}
}
// Infer the average genome size for intermediate tax IDs
// If this becomes inefficient in future, consider using a tree DP
for (i = 0 ; i < _nodeCnt ; ++i)
{
if (!preset[i])
continue ;
if (i == _taxonomyTree[i].parentTid || !_taxonomyTree[i].leaf)
continue ;
size_t p = _taxonomyTree[i].parentTid ;
while (1)
{
++taxidCount[p] ;
taxidNewLength[p] += taxidLength[i] ;
if (p == _taxonomyTree[p].parentTid)
break ;
p = _taxonomyTree[p].parentTid ;
}
}
for (i = 0 ; i < _nodeCnt ; ++i)
{
if (taxidLength[i] == 0 || lengthFromSeqLength)
{
size_t sum = taxidNewLength[i] ;
if (preset[i])
sum += taxidLength[i] ;
taxidLength[i] = sum / taxidCount[i] ;
}
}
free(taxidCount) ;
free(taxidNewLength) ;
free(preset) ;
}
void Save(FILE *fp)
{
SAVE_VAR(fp, _nodeCnt) ;
SAVE_VAR(fp, _seqCnt) ;
SAVE_VAR(fp, _extraSeqCnt) ;
// Save the taxnomoy information
fwrite(_taxonomyTree, sizeof(_taxonomyTree[0]), _nodeCnt, fp) ;
_taxIdMap.Save(fp) ;
size_t i ;
for (i = 0 ; i < _nodeCnt ; ++i)
SaveString(fp, _taxonomyName[i]) ;
// Save the seqID information
fwrite(_seqIdToTaxId, sizeof(_seqIdToTaxId[0]), _seqCnt, fp ) ;
for (i = 0 ; i < _seqCnt + _extraSeqCnt ; ++i)
{
std::string s = _seqStrNameMap.Inverse(i) ;
SaveString(fp, s) ;
}
}
void Load(FILE *fp)
{
Free() ;