-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
31 lines (26 loc) · 993 Bytes
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import cv2
import numpy as np
import os
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
DIM = 128
def resize_images(dir_, size=DIM):
count = len(os.listdir(dir_))
images = np.zeros([count, size, size], dtype='uint8')
# Read and resize images
scaler = StandardScaler()
for (i,image) in zip(range(len(os.listdir(dir_))), os.listdir(dir_)):
im_arr = cv2.imread(os.path.join(dir_, image))
im_arr = cv2.cvtColor(im_arr, cv2.COLOR_BGR2GRAY)
im_arr = cv2.resize(im_arr, (size, size))
im_arr = scaler.fit_transform(im_arr)
images[i] = im_arr
images = images.reshape(count, -1)
return images
def pca(images, components):
pca = PCA(n_components= components)
pca.fit(images)
lower_dimensional_data = pca.fit_transform(images)
expected_variance = pca.explained_variance_ratio_.cumsum()[-1]
return (lower_dimensional_data, expected_variance)