-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem 24.cpp
60 lines (48 loc) · 1.2 KB
/
Problem 24.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*
A permutation is an ordered arrangement of objects.
For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4.
If all of the permutations are listed numerically or alphabetically,
we call it lexicographic order.
The lexicographic permutations of 0, 1 and 2 are:
012 021 102 120 201 210
What is the millionth lexicographic permutation of the digits
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
*/
#include <iostream>
#include <cassert>
using namespace std;
int digits[10]; // digit[0] := least significant bit
int factorial(int n)
{
assert(n >= 0);
if (n == 1 || n == 0)
return 1;
else
return n * factorial(n - 1);
}
void pos_lexper(long pos)
{
assert(pos < factorial(10) && pos > 0);
long counter = 0, tmp;
bool used[10] = {false};
for (int i = 9; i >= 0; i--) { // choose bit index
for (int j = 0; j < 10; j++) { // choose what number in that bit
if (used[j]) // this number has been used
continue;
digits[i] = j;
if ((tmp = counter + factorial(i)) >= pos) { // be careful in here!
used[j] = true;
break;
}
else
counter = tmp;
}
}
}
int main()
{
pos_lexper(1000000l);
for (int i = 9; i >=0; i--)
cout << digits[i];
return 0;
}