-
Notifications
You must be signed in to change notification settings - Fork 12
/
rnn_model.py
198 lines (179 loc) · 6.92 KB
/
rnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import getopt
import keras.layers as kl
import keras.models as km
# the number of events types, also the dimension of each single input and output
DIM = 20
# return a sorted list of all files name
def sort_file_list(path):
flist = os.listdir(path)
index = flist[0].find('.')
postfix = flist[0][index:]
prefix = []
for f in flist:
prefix.append(int(f.split('.')[0]))
prefix.sort()
flist = []
for p in prefix:
flist.append(os.path.join(path,str(p) + postfix))
return flist
def gen_dataset(path):
flist = sort_flie_list(path)
dataset = np.zeros([len(flist), DIM])
for i in range(len(flist)):
dataset[i] = build_event_vec(flist[i])
return dataset
# build a vector to represent the event type distibution
def build_event_vec(fileName):
vec = np.zeros(DIM, dtype=np.int32)
with open(fileName, 'r') as f:
line = f.readline()
line = f.readline().strip('\n')
while line != '':
temp = line.split(': ')
try:
vec[int(temp[0])-1] = int(temp[1])
except Exception:
pass
#print(fileName, line)
line = f.readline().strip('\n')
return vec
# build a raw dataset containing a series of event type distribution
def build_event_dataset(flist, start=0, end=None):
dataset = np.zeros((end-start, DIM), dtype=np.int32)
if end == None:
end = len(flist)
for i in range(start, end):
dataset[i-start,:] = build_event_vec(flist[i])
return dataset
# build dataset used for rnn training
def build_train_data(flist, start, end, step):
trainSet = np.zeros((end-start, step, DIM), dtype=np.int32)
for i in range(start, end):
trainSet[i-start,:,:] = build_event_dataset(flist, i, i+step)
return trainSet
# build dataset used for rnn test
def build_train_result(flist, start, end, step, lookahead):
trainResult = np.zeros((end-start, 1, DIM), dtype=np.int32)
for i in range(start, end):
trainResult[i-start,:,:] = build_event_dataset(flist, i+step+lookahead, i+step+lookahead+1)
trainResult = np.reshape(trainResult, (end-start,DIM))
return trainResult
# write a two-dimension data into a file
def write_result(filename, data):
with open(filename, 'w') as f:
for line in data:
for e in line:
f.write(str(e[-1]) + ' ')
f.write('\n')
# build datasets
def build_datasets(path, trainSize=1500, testSize=60, step=30, lookahead=1):
print('build training data')
flist = sort_file_list(path)# build training and test datasets
trainData = build_train_data(flist, 0, trainSize, step)
print('build training result')
#result = build_train_result(flist, 0, trainSize, step, lookahead)
trainResult = build_train_data(flist, lookahead, trainSize+lookahead, step)
print('build test data')
testData = build_train_data(flist, trainSize, trainSize+testSize, step)
print('build test result')
#testResult = build_train_result(flist, trainSize, trainSize+testSize, step, lookahead)
testResult = build_train_data(flist, trainSize+lookahead, trainSize+testSize+lookahead, step)
print('all datasets built')
return trainData, trainResult, testData, testResult
# train model
def train_model(trainData, trainResult, step=30, epochs=3000):
model = km.Sequential()
model.add(kl.LSTM(DIM, input_shape=(step, DIM), return_sequences=True, activation='relu'))
#model.add(kl.LSTM(DIM, input_dim = DIM, input_length = step, activation='sigmoid'))
model.add(kl.TimeDistributed(kl.Dense(DIM)))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainData, trainResult, epochs=epochs, batch_size=32, verbose=2, validation_split = 0.05)
return model
# predict and evaluate
def eval_model(predict, testResult):
errorSum = 0
for i in range(predict.shape[0]):
for j in range(predict.shape[1]):
diff = sum(abs(predict[i,j,:] - testResult[i,j,:])) / sum(testResult[i,j,:])
errorSum += diff
errorAve = errorSum / predict.shape[0] / predict.shape[1]
return errorAve
# plot the predict results and truth
def plotDiagram(truthFile, predictFile):
col = 0
truth,predict = [],[]
with open(truthFile, 'r') as src:
for line in src:
truth.append(getNum(line))
with open(predictFile, 'r') as src:
for line in src:
predict.append(getNum(line))
tru = np.array(truth)
pre = np.array(predict)
while True:
code = input('which event to plot? input an event code between 01 ~ 20, input 0 to quit\n')
col = int(code) - 1
if col == -1:
break
plt.title('Tendency diagram for event '+code)
plt.plot(tru[:,col],label='truth')
plt.plot(pre[:,col],label='prediction')
plt.grid()
plt.legend(loc='upper left')
plt.show()
# asisstant function for plotDiagram, extract numbers from a line of text
def getNum(line):
num = line.strip('\n').strip(' ').split(' ')
result = []
for e in num:
result.append(float(e))
return result
def main():
path, modelFile = 'attr-aus', None
epochs = 3000
lookahead = 1
step = 30
# parse arguments
options,args = getopt.getopt(sys.argv[1:],"p:a:e:m:s:")
for opt, para in options:
if opt == '-p':
path = para
if opt == '-a':
lookahead = int(para)
if opt == '-e':
epochs = int(para)
if opt == '-m':
model = para
if opt == '-s':
step = int(para)
trainData, trainResult, testData, testResult = build_datasets(path, step=step, lookahead=lookahead)
if modelFile == None: # train a new model
model = train_model(trainData, trainResult, step=step, epochs=epochs)
# save model
model.save('model_%s_%d_%d_%d.h5'%(path, epochs, step, lookahead))
print('model saved as: currentDirectory/model.h5')
else: # load a model
print('load model from: ' + modelFile)
model = km.load_model(modelFile)
# predict
predictResult = model.predict(testData)
x,y = np.zeros([predictResult.shape[0],min(lookahead,step),DIM]), np.zeros([predictResult.shape[0],min(lookahead,step),DIM])
for i in range(predictResult.shape[0]):
x[i] = predictResult[i,-lookahead:]
y[i] = testResult[i,-lookahead:]
error = eval_model(x, y)
print('average error: %f'%(error))
# save truth and predict results
truthFile = 'truth_%s_%d_%d_%d.txt'%(path, epochs, step, lookahead)
predictFile = 'predict_%s_%d_%d_%d_%.4f.txt'%(path, epochs, step, lookahead, error)
write_result(truthFile, testResult)
write_result(predictFile, predictResult)
print('truth and predicted result saved')
# plot truth and predict results
plotDiagram(truthFile, predictFile)
if __name__ == '__main__':
main()