-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nested_apportionment.py
354 lines (309 loc) · 15.1 KB
/
test_nested_apportionment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""Tests for nested_apportionment.py module."""
import re
import unittest
from collections import defaultdict
from nested_apportionment import (
allocate_remainder,
max_remainder_round,
nested_apportion,
sum_nested,
)
class TestAllocateRemainder(unittest.TestCase):
"""Test cases for the allocate_remainder function."""
def test_different_remainders_total_0(self):
"""Test allocation when total is 0."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 0
expected_result = {"A": 0, "B": 0, "C": 0}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_different_remainders_total_1(self):
"""Test allocation when total is 1."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 1
expected_result = {"A": 0, "B": 1, "C": 0}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_different_remainders_total_2(self):
"""Test allocation when total is 2."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 2
expected_result = {"A": 0, "B": 1, "C": 1}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_different_remainders_total_3(self):
"""Test allocation when total is 3."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 3
expected_result = {"A": 1, "B": 1, "C": 1}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_tie_break_with_errors(self):
"""Test tie-breaking using the smallest errors in case of remainder ties."""
remainders = {"A": 0.7, "B": 0.7, "C": 0.1}
errors = {"A": -0.2, "B": -0.3, "C": -1.1}
total = 1
expected_result = {"A": 0, "B": 1, "C": 0}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_tie_break_lexically(self):
"""Test tie-breaking using lexical order when remainders & errors are equal."""
remainders = {"A": 0.7, "B": 0.7, "C": 0.1}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 1
expected_result = {"A": 1, "B": 0, "C": 0}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_with_default_dict_errors(self):
"""Test that errors can be a defaultdict."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = defaultdict(float)
total = 1
expected_result = {"A": 0, "B": 1, "C": 0}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
def test_raises_if_negative_total(self):
"""Test raises ValueError when total is negative."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = -1
expected_msg = re.escape("Total is negative")
with self.assertRaisesRegex(ValueError, expected_msg):
allocate_remainder(remainders, total, errors)
def test_raises_if_total_too_large(self):
"""Test raises ValueError when total exceeds the number of categories."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 4
expected_msg = re.escape("Total is larger than number of categories")
with self.assertRaisesRegex(ValueError, expected_msg):
allocate_remainder(remainders, total, errors)
def test_raises_remainders_and_errors_inconsistent(self):
"""Test raises ValueError when keys of remainders and errors differ."""
remainders = {"A": 0.1, "B": 0.7, "C": 0.4}
errors = {"A": 0.0, "B": 0.0, "D": 0.0}
total = 0
expected_msg = re.escape("Remainders and errors have different keys")
with self.assertRaisesRegex(ValueError, expected_msg):
allocate_remainder(remainders, total, errors)
def test_empty_remainders(self):
"""Test when remainders and errors are empty."""
remainders = {}
errors = {}
total = 0
expected_result = {}
result = allocate_remainder(remainders, total, errors)
self.assertEqual(expected_result, result)
class TestCaseWithDictAlmostEqual(unittest.TestCase):
"""Test case with some useful comparison methods for data structures with floats."""
def assertDictAlmostEqual(self, dict1: dict, dict2: dict, places: int = 7) -> None:
"""Assert two dicts (possibly nested) are equal within a tolerance for floats.
Args:
dict1: First dictionary to compare.
dict2: Second dictionary to compare.
places: Number of decimal places to consider (default 7).
"""
self.assertEqual(len(dict1), len(dict2), "Dictionaries have different lengths")
for key in dict1:
self.assertIn(key, dict2, f"Key {key} not found in the second dictionary")
if isinstance(dict1[key], dict) and isinstance(dict2[key], dict):
self.assertDictAlmostEqual(dict1[key], dict2[key], places)
else:
self.assertAlmostEqual(
dict1[key], dict2[key], places=places, msg=f"Error in key: {key}"
)
def assertListOfDictsAlmostEqual(self, list1, list2, places: int = 7):
"""Assert two lists of dictionaries are equal within a tolerance for floats.
Args:
list1: First dictionary to compare.
list2: Second dictionary to compare.
places: Number of decimal places to consider (default 7).
"""
self.assertEqual(len(list1), len(list2))
for dict1, dict2 in zip(list1, list2):
self.assertDictAlmostEqual(dict1, dict2, places=places)
class TestMaxRemainderRound(TestCaseWithDictAlmostEqual):
"""Tests for the max_remainder_round function."""
def test_rounding_with_no_fraction(self):
"""No rounding needed, total matches sum of predictions."""
predictions = {"A": 3.0, "B": 5.0, "C": 2.0}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 10
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 3, "B": 5, "C": 2}
expected_errors = {"A": 0.0, "B": 0.0, "C": 0.0}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_with_no_additional(self):
"""No rounding up needed, predictions rounded down to total."""
predictions = {"A": 3.8, "B": 5.8, "C": 2.8}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 10
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 3, "B": 5, "C": 2}
expected_errors = {"A": -0.8, "B": -0.8, "C": -0.8}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_up_one(self):
"""Rounding up for one category due to a remainder."""
predictions = {"A": 3.1, "B": 5.2, "C": 2.1}
errors = {"A": 0.1, "B": 0.1, "C": 0.1}
total = 11
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 3, "B": 6, "C": 2}
expected_errors = {"A": -0.1, "B": 0.8, "C": -0.1}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_with_no_fraction_bigger_total(self):
"""No rounding needed, total is larger than sum of predictions."""
predictions = {"A": 3.0, "B": 5.0, "C": 2.0}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 11
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 4, "B": 5, "C": 2}
expected_errors = {"A": 1.0, "B": 0.0, "C": 0.0}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_with_fraction(self):
"""Rounding up for multiple categories to meet total."""
predictions = {"A": 3.3, "B": 4.7, "C": 2.9}
errors = {"A": 0.1, "B": 0.1, "C": 0.1}
total = 11
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 3, "B": 5, "C": 3}
expected_errors = {"A": -0.3, "B": 0.3, "C": 0.1}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_with_tie(self):
"""Tie in remainders, break tie using the smallest error."""
predictions = {"A": 3.5, "B": 4.5, "C": 2.5}
errors = {"A": 0.1, "B": 0.1, "C": 0.0}
total = 11
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 4, "B": 4, "C": 3}
expected_errors = {"A": 0.5, "B": -0.5, "C": 0.5}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_rounding_with_tie_and_error(self):
"""Tie in remainders and errors, break tie lexicographically."""
predictions = {"A": 3.5, "B": 4.5, "C": 2.5}
errors = {"A": 0.1, "B": 0.1, "C": 0.1}
total = 11
result, updated_errors = max_remainder_round(predictions, total, errors)
expected_result = {"A": 4, "B": 5, "C": 2}
expected_errors = {"A": 0.5, "B": 0.5, "C": -0.5}
self.assertDictAlmostEqual(expected_result, result)
self.assertDictAlmostEqual(expected_errors, updated_errors)
def test_raises_if_total_too_large(self):
"""Raises ValueError if total exceeds sum of predictions plus category count."""
predictions = {"A": 3.0, "B": 5.0, "C": 2.0}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 14
with self.assertRaises(ValueError):
max_remainder_round(predictions, total, errors)
def test_raises_if_total_too_small(self):
"""Raises ValueError if total less than sum of floor of predictions."""
predictions = {"A": 3.0, "B": 5.0, "C": 2.0}
errors = {"A": 0.0, "B": 0.0, "C": 0.0}
total = 9
with self.assertRaises(ValueError):
max_remainder_round(predictions, total, errors)
class TestSumNested(TestCaseWithDictAlmostEqual):
"""Tests for the sum_nested function."""
def test_sum_nested(self):
"""Test that nested dictionaries are flattened and summed correctly."""
predictions = {"A": {"P": {"X": 1.2, "Y": 1.3}, "Q": {"X": 1.0, "Y": 0.7}}}
expected_result = {"A": 4.2}
result = sum_nested(predictions)
self.assertEqual(expected_result, result)
class TestNestedApportion(TestCaseWithDictAlmostEqual):
"""Tests for nested_apportion."""
def test_single_level_apportionment(self):
"""Apportion a flat set of categories with no nesting."""
predictions = {"A": 2.3, "B": 3.7, "C": 4.0}
result = nested_apportion(predictions)
expected_result = {"A": 2, "B": 4, "C": 4}
self.assertDictAlmostEqual(result, expected_result)
def test_apportion_two_levels(self):
"""Handle two levels of nested predictions."""
predictions = {
"A": {"X": 2.3, "Y": 3.7},
"B": {"X": 4.0, "Y": 1.0},
"C": {"X": 0.5, "Y": 0.5},
}
expected_result = {
"A": {"X": 2, "Y": 4},
"B": {"X": 4, "Y": 1},
"C": {"X": 1, "Y": 0},
}
result = nested_apportion(predictions)
self.assertDictAlmostEqual(expected_result, result)
def test_apportion_three_levels(self):
"""Handle three levels of nested predictions and error accumulation."""
predictions = {
"A": {"X": {"P": 1.2, "Q": 2.0}, "Y": {"P": 0.8, "Q": 1.7}},
"B": {"X": {"P": 3.1, "Q": 0.9}, "Y": {"P": 4.2, "Q": 1.1}},
}
expected_result = {
"A": {"X": {"P": 1, "Q": 2}, "Y": {"P": 1, "Q": 2}},
"B": {"X": {"P": 3, "Q": 1}, "Y": {"P": 4, "Q": 1}},
}
result = nested_apportion(predictions)
self.assertDictAlmostEqual(result, expected_result)
def test_bigger_case(self):
"""Test multiple levels of nesting with many ties.
This test demonstrates how the error counting methods make sure that the
apportionment is approximately balanced even at the lower levels, in the case
of ties.
"""
predictions = {
"car": {
"german": {"red": 2.7, "blue": 2.7, "green": 2.7},
"polish": {"red": 2.7, "blue": 2.7, "green": 2.7},
"dutch": {"red": 2.7, "blue": 2.7, "green": 2.7},
},
"truck": {
"german": {"red": 2.7, "blue": 2.7, "green": 2.7},
"polish": {"red": 2.7, "blue": 2.7, "green": 2.7},
"dutch": {"red": 2.7, "blue": 2.7, "green": 2.7},
},
"van": {
"german": {"red": 2.7, "blue": 2.7, "green": 2.7},
"polish": {"red": 2.7, "blue": 2.7, "green": 2.7},
"dutch": {"red": 2.7, "blue": 2.7, "green": 2.7},
},
"bus": {
"german": {"red": 1.6, "blue": 1.6, "green": 1.6},
"polish": {"red": 1.6, "blue": 1.6, "green": 1.6},
"dutch": {"red": 1.6, "blue": 1.6, "green": 1.6},
},
}
result = nested_apportion(predictions)
pred_pivots = self.get_pivots(predictions)
result_pivots = self.get_pivots(result)
for key, pred_val in pred_pivots.items():
diff = result_pivots[key] - pred_val
if abs(diff) > 1:
self.fail(f"Sum of {key} was {pred_val} and is {result_pivots[key]}")
@staticmethod
def get_pivots(d):
"""Add up the sums of all categories in the predictions."""
total_predictions = {
"car": sum([sum(value.values()) for value in d["car"].values()]),
"truck": sum([sum(value.values()) for value in d["truck"].values()]),
"van": sum([sum(value.values()) for value in d["van"].values()]),
"bus": sum([sum(value.values()) for value in d["bus"].values()]),
"german": sum([sum(d[typ]["german"].values()) for typ in d]),
"polish": sum([sum(d[typ]["polish"].values()) for typ in d]),
"dutch": sum([sum(d[typ]["dutch"].values()) for typ in d]),
"red": sum([sum(d[typ][nat]["red"] for nat in d[typ]) for typ in d]),
"blue": sum([sum(d[typ][nat]["blue"] for nat in d[typ]) for typ in d]),
"green": sum([sum(d[typ][nat]["green"] for nat in d[typ]) for typ in d]),
}
return total_predictions
if __name__ == "__main__":
unittest.main()