|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +# power for Manning's hydraulic radius term |
| 4 | +_mpow = 2.0 / 3.0 |
| 5 | + |
| 6 | + |
| 7 | +def calculate_rectchan_mannings_discharge( |
| 8 | + conversion_factor, roughness, slope, width, depth |
| 9 | +): |
| 10 | + """ |
| 11 | + Calculate Manning's discharge for a rectangular channel. |
| 12 | +
|
| 13 | + """ |
| 14 | + area = width * depth |
| 15 | + return conversion_factor * area * depth**_mpow * slope**0.5 / roughness |
| 16 | + |
| 17 | + |
| 18 | +# n-point cross-section functions |
| 19 | +def get_wetted_station( |
| 20 | + x0, |
| 21 | + x1, |
| 22 | + h0, |
| 23 | + h1, |
| 24 | + depth, |
| 25 | +): |
| 26 | + """Get the wetted length in the x-direction""" |
| 27 | + # -- calculate the minimum and maximum depth |
| 28 | + hmin = min(h0, h1) |
| 29 | + hmax = max(h0, h1) |
| 30 | + |
| 31 | + # -- if depth is less than or equal to the minimum value the |
| 32 | + # station length (xlen) is zero |
| 33 | + if depth <= hmin: |
| 34 | + x1 = x0 |
| 35 | + # -- if depth is between hmin and hmax, station length is less |
| 36 | + # than h1 - h0 |
| 37 | + elif depth < hmax: |
| 38 | + xlen = x1 - x0 |
| 39 | + dlen = h1 - h0 |
| 40 | + if abs(dlen) > 0.0: |
| 41 | + slope = xlen / dlen |
| 42 | + else: |
| 43 | + slope = 0.0 |
| 44 | + if h0 > h1: |
| 45 | + dx = (depth - h1) * slope |
| 46 | + xt = x1 + dx |
| 47 | + xt0 = xt |
| 48 | + xt1 = x1 |
| 49 | + else: |
| 50 | + dx = (depth - h0) * slope |
| 51 | + xt = x0 + dx |
| 52 | + xt0 = x0 |
| 53 | + xt1 = xt |
| 54 | + x0 = xt0 |
| 55 | + x1 = xt1 |
| 56 | + return x0, x1 |
| 57 | + |
| 58 | + |
| 59 | +def get_wetted_perimeter( |
| 60 | + x0, |
| 61 | + x1, |
| 62 | + h0, |
| 63 | + h1, |
| 64 | + depth, |
| 65 | +): |
| 66 | + # -- calculate the minimum and maximum depth |
| 67 | + hmin = min(h0, h1) |
| 68 | + hmax = max(h0, h1) |
| 69 | + |
| 70 | + # -- calculate the wetted perimeter for the segment |
| 71 | + xlen = x1 - x0 |
| 72 | + if xlen > 0.0: |
| 73 | + if depth > hmax: |
| 74 | + dlen = hmax - hmin |
| 75 | + else: |
| 76 | + dlen = depth - hmin |
| 77 | + else: |
| 78 | + if depth > hmin: |
| 79 | + dlen = min(depth, hmax) - hmin |
| 80 | + else: |
| 81 | + dlen = 0.0 |
| 82 | + return np.sqrt(xlen**2.0 + dlen**2.0) |
| 83 | + |
| 84 | + |
| 85 | +def get_wetted_area(x0, x1, h0, h1, depth): |
| 86 | + # -- calculate the minimum and maximum depth |
| 87 | + hmin = min(h0, h1) |
| 88 | + hmax = max(h0, h1) |
| 89 | + |
| 90 | + # -- calculate the wetted area for the segment |
| 91 | + xlen = x1 - x0 |
| 92 | + area = 0.0 |
| 93 | + if xlen > 0.0: |
| 94 | + # -- add the area above hmax |
| 95 | + if depth > hmax: |
| 96 | + area = xlen * (depth - hmax) |
| 97 | + # -- add the area below zmax |
| 98 | + if hmax != hmin and depth > hmin: |
| 99 | + area += 0.5 * (depth - hmin) |
| 100 | + return area |
| 101 | + |
| 102 | + |
| 103 | +def wetted_area( |
| 104 | + x, |
| 105 | + h, |
| 106 | + depth, |
| 107 | + verbose=False, |
| 108 | +): |
| 109 | + area = 0.0 |
| 110 | + if x.shape[0] == 1: |
| 111 | + area = x[0] * depth |
| 112 | + else: |
| 113 | + for idx in range(0, x.shape[0] - 1): |
| 114 | + x0, x1 = x[idx], x[idx + 1] |
| 115 | + h0, h1 = h[idx], h[idx + 1] |
| 116 | + |
| 117 | + # get station data |
| 118 | + x0, x1 = get_wetted_station(x0, x1, h0, h1, depth) |
| 119 | + |
| 120 | + # get wetted area |
| 121 | + a = get_wetted_area(x0, x1, h0, h1, depth) |
| 122 | + area += a |
| 123 | + |
| 124 | + # write to screen |
| 125 | + if verbose: |
| 126 | + print( |
| 127 | + f"{idx}->{idx + 1} ({x0},{x1}) - " |
| 128 | + f"perimeter={x1 - x0} - area={a}" |
| 129 | + ) |
| 130 | + |
| 131 | + return area |
| 132 | + |
| 133 | + |
| 134 | +def wetted_perimeter( |
| 135 | + x, |
| 136 | + h, |
| 137 | + depth, |
| 138 | + verbose=False, |
| 139 | +): |
| 140 | + perimeter = 0.0 |
| 141 | + if x.shape[0] == 1: |
| 142 | + perimeter = x[0] |
| 143 | + else: |
| 144 | + for idx in range(0, x.shape[0] - 1): |
| 145 | + x0, x1 = x[idx], x[idx + 1] |
| 146 | + h0, h1 = h[idx], h[idx + 1] |
| 147 | + |
| 148 | + # get station data |
| 149 | + x0, x1 = get_wetted_station(x0, x1, h0, h1, depth) |
| 150 | + |
| 151 | + # get wetted perimeter |
| 152 | + perimeter += get_wetted_perimeter(x0, x1, h0, h1, depth) |
| 153 | + |
| 154 | + # write to screen |
| 155 | + if verbose: |
| 156 | + print(f"{idx}->{idx + 1} ({x0},{x1}) - perimeter={x1 - x0}") |
| 157 | + |
| 158 | + return perimeter |
| 159 | + |
| 160 | + |
| 161 | +def manningsq( |
| 162 | + x, |
| 163 | + h, |
| 164 | + depth, |
| 165 | + roughness=0.01, |
| 166 | + slope=0.001, |
| 167 | + conv=1.0, |
| 168 | +): |
| 169 | + if isinstance(roughness, float): |
| 170 | + roughness = np.ones(x.shape, dtype=float) * roughness |
| 171 | + if x.shape[0] > 1: |
| 172 | + q = 0.0 |
| 173 | + for i0 in range(x.shape[0] - 1): |
| 174 | + i1 = i0 + 1 |
| 175 | + perimeter = get_wetted_perimeter(x[i0], x[i1], h[i0], h[i1], depth) |
| 176 | + area = get_wetted_area(x[i0], x[i1], h[i0], h[i1], depth) |
| 177 | + if perimeter > 0.0: |
| 178 | + radius = area / perimeter |
| 179 | + q += ( |
| 180 | + conv * area * radius ** _mpow * slope ** 0.5 / roughness[i0] |
| 181 | + ) |
| 182 | + else: |
| 183 | + perimeter = wetted_perimeter(x, h, depth) |
| 184 | + area = wetted_area(x, h, depth) |
| 185 | + radius = 0.0 |
| 186 | + if perimeter > 0.0: |
| 187 | + radius = area / perimeter |
| 188 | + q = conv * area * radius ** _mpow * slope ** 0.5 / roughness[0] |
| 189 | + return q |
| 190 | + |
| 191 | + |
| 192 | +def get_depths( |
| 193 | + flows, |
| 194 | + x, |
| 195 | + h, |
| 196 | + roughness=0.01, |
| 197 | + slope=0.001, |
| 198 | + conv=1.0, |
| 199 | + dd=1e-4, |
| 200 | + verbose=False, |
| 201 | +): |
| 202 | + if isinstance(flows, float): |
| 203 | + flows = np.array([flows], dtype=float) |
| 204 | + if isinstance(roughness, float): |
| 205 | + roughness = np.ones(x.shape, dtype=float) * roughness |
| 206 | + depths = np.zeros(flows.shape, dtype=float) |
| 207 | + for idx, q in enumerate(flows): |
| 208 | + depths[idx] = qtodepth( |
| 209 | + x, |
| 210 | + h, |
| 211 | + q, |
| 212 | + roughness=roughness, |
| 213 | + slope=slope, |
| 214 | + conv=conv, |
| 215 | + dd=dd, |
| 216 | + verbose=False, |
| 217 | + ) |
| 218 | + |
| 219 | + return depths |
| 220 | + |
| 221 | + |
| 222 | +def qtodepth( |
| 223 | + x, |
| 224 | + h, |
| 225 | + q, |
| 226 | + roughness=0.01, |
| 227 | + slope=0.001, |
| 228 | + conv=1.0, |
| 229 | + dd=1e-4, |
| 230 | + verbose=False, |
| 231 | +): |
| 232 | + h0 = 0.0 |
| 233 | + q0 = manningsq( |
| 234 | + x, |
| 235 | + h, |
| 236 | + h0, |
| 237 | + roughness=roughness, |
| 238 | + slope=slope, |
| 239 | + conv=conv, |
| 240 | + ) |
| 241 | + r = q0 - q |
| 242 | + |
| 243 | + iter = 0 |
| 244 | + if verbose: |
| 245 | + print(f"iteration {iter:>2d} - residual={r}") |
| 246 | + while abs(r) > 1e-12: |
| 247 | + q1 = manningsq( |
| 248 | + x, |
| 249 | + h, |
| 250 | + h0 + dd, |
| 251 | + roughness=roughness, |
| 252 | + slope=slope, |
| 253 | + conv=conv, |
| 254 | + ) |
| 255 | + dq = q1 - q0 |
| 256 | + if dq != 0.0: |
| 257 | + derv = dd / (q1 - q0) |
| 258 | + else: |
| 259 | + derv = 0.0 |
| 260 | + h0 -= derv * r |
| 261 | + q0 = manningsq( |
| 262 | + x, |
| 263 | + h, |
| 264 | + h0, |
| 265 | + roughness=roughness, |
| 266 | + slope=slope, |
| 267 | + conv=conv, |
| 268 | + ) |
| 269 | + r = q0 - q |
| 270 | + |
| 271 | + iter += 1 |
| 272 | + if verbose: |
| 273 | + print(f"iteration {iter:>2d} - residual={r}") |
| 274 | + if iter > 100: |
| 275 | + break |
| 276 | + return h0 |
0 commit comments