diff --git a/examples/aishell/paraformer/run.sh b/examples/aishell/paraformer/run.sh index 3f485c207..410751af1 100755 --- a/examples/aishell/paraformer/run.sh +++ b/examples/aishell/paraformer/run.sh @@ -39,23 +39,14 @@ train_set=train valid_set=dev test_sets="dev test" -asr_config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml -model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}" - -#inference_config=conf/decode_asr_transformer_noctc_1best.yaml -#inference_asr_model=valid.acc.ave_10best.pb - -## you can set gpu num for decoding here -#gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default -#ngpu=$(echo $gpuid_list | awk -F "," '{print NF}') -# -#if ${gpu_inference}; then -# inference_nj=$[${ngpu}*${njob}] -# _ngpu=1 -#else -# inference_nj=$njob -# _ngpu=0 -#fi +config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml +model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}" + +inference_device="cuda" #"cpu" +inference_checkpoint="model.pt" +inference_scp="wav.scp" + + if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "stage -1: Data Download" @@ -85,10 +76,10 @@ fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: Feature and CMVN Generation" -# utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0 +# utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$config" --scale 1.0 python ../../../funasr/bin/compute_audio_cmvn.py \ --config-path "${workspace}" \ - --config-name "${asr_config}" \ + --config-name "${config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ ++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \ ++dataset_conf.num_workers=$nj @@ -116,90 +107,84 @@ fi # ASR Training Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then -echo "stage 4: ASR Training" + echo "stage 4: ASR Training" + log_file="${exp_dir}/exp/${model_dir}/train.log.txt" + echo "log_file: ${log_file}" torchrun \ --nnodes 1 \ --nproc_per_node ${gpu_num} \ ../../../funasr/bin/train.py \ --config-path "${workspace}" \ - --config-name "${asr_config}" \ + --config-name "${config}" \ ++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \ - ++cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ - ++token_list="${token_list}" \ - ++output_dir="${exp_dir}/exp/${model_dir}" + ++tokenizer_conf.token_list="${token_list}" \ + ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ + ++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file} fi -# -## Testing Stage -#if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then -# echo "stage 5: Inference" -# for dset in ${test_sets}; do -# asr_exp=${exp_dir}/exp/${model_dir} -# inference_tag="$(basename "${inference_config}" .yaml)" -# _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}" -# _logdir="${_dir}/logdir" -# if [ -d ${_dir} ]; then -# echo "${_dir} is already exists. if you want to decode again, please delete this dir first." -# exit 0 -# fi -# mkdir -p "${_logdir}" -# _data="${feats_dir}/data/${dset}" -# key_file=${_data}/${scp} -# num_scp_file="$(<${key_file} wc -l)" -# _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file") -# split_scps= -# for n in $(seq "${_nj}"); do -# split_scps+=" ${_logdir}/keys.${n}.scp" -# done -# # shellcheck disable=SC2086 -# utils/split_scp.pl "${key_file}" ${split_scps} -# _opts= -# if [ -n "${inference_config}" ]; then -# _opts+="--config ${inference_config} " -# fi -# ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \ -# python -m funasr.bin.asr_inference_launch \ -# --batch_size 1 \ -# --ngpu "${_ngpu}" \ -# --njob ${njob} \ -# --gpuid_list ${gpuid_list} \ -# --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ -# --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \ -# --key_file "${_logdir}"/keys.JOB.scp \ -# --asr_train_config "${asr_exp}"/config.yaml \ -# --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ -# --output_dir "${_logdir}"/output.JOB \ -# --mode paraformer \ -# ${_opts} -# -# for f in token token_int score text; do -# if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then -# for i in $(seq "${_nj}"); do -# cat "${_logdir}/output.${i}/1best_recog/${f}" -# done | sort -k1 >"${_dir}/${f}" -# fi -# done -# python utils/proce_text.py ${_dir}/text ${_dir}/text.proc -# python utils/proce_text.py ${_data}/text ${_data}/text.proc -# python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer -# tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt -# cat ${_dir}/text.cer.txt -# done -#fi -# -## Prepare files for ModelScope fine-tuning and inference -#if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then -# echo "stage 6: ModelScope Preparation" -# cp ${feats_dir}/data/${train_set}/cmvn/am.mvn ${exp_dir}/exp/${model_dir}/am.mvn -# vocab_size=$(cat ${token_list} | wc -l) -# python utils/gen_modelscope_configuration.py \ -# --am_model_name $inference_asr_model \ -# --mode paraformer \ -# --model_name paraformer \ -# --dataset aishell \ -# --output_dir $exp_dir/exp/$model_dir \ -# --vocab_size $vocab_size \ -# --nat _nat \ -# --tag $tag -#fi \ No newline at end of file + + +# Testing Stage +if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then + echo "stage 5: Inference" + + if ${inference_device} == "cuda"; then + nj=$(echo CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') + else + nj=$njob + batch_size=1 + gpuid_list="" + for JOB in $(seq ${nj}); do + gpuid_list=CUDA_VISIBLE_DEVICES"-1," + done + fi + + for dset in ${test_sets}; do + + inference_dir="${asr_exp}/${inference_checkpoint}/${dset}" + _logdir="${inference_dir}/logdir" + + mkdir -p "${_logdir}" + data_dir="${feats_dir}/data/${dset}" + key_file=${data_dir}/${inference_scp} + + split_scps= + for JOB in $(seq "${nj}"); do + split_scps+=" ${_logdir}/keys.${JOB}.scp" + done + utils/split_scp.pl "${key_file}" ${split_scps} + + for JOB in $(seq ${nj}); do + { + python ../../../funasr/bin/inference.py \ + --config-path="${exp_dir}/exp/${model_dir}" \ + --config-name="config.yaml" \ + ++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \ + ++tokenizer_conf.token_list="${token_list}" \ + ++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \ + ++input="${_logdir}/keys.${JOB}.scp" \ + ++output_dir="${inference_dir}/${JOB}" \ + ++device="${inference_device}" + }& + + done + wait + + mkdir -p ${inference_dir}/1best_recog + for f in token score text; do + if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then + for JOB in $(seq "${nj}"); do + cat "${inference_dir}/${JOB}/1best_recog/${f}" + done | sort -k1 >"${inference_dir}/1best_recog/${f}" + fi + done + + echo "Computing WER ..." + cp ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc + cp ${data_dir}/text ${inference_dir}/1best_recog/text.ref + python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer + tail -n 3 ${inference_dir}/1best_recog/text.cer + done + +fi diff --git a/examples/aishell/paraformer/utils/compute_wer.py b/examples/aishell/paraformer/utils/compute_wer.py new file mode 100755 index 000000000..26a9f491f --- /dev/null +++ b/examples/aishell/paraformer/utils/compute_wer.py @@ -0,0 +1,157 @@ +import os +import numpy as np +import sys + +def compute_wer(ref_file, + hyp_file, + cer_detail_file): + rst = { + 'Wrd': 0, + 'Corr': 0, + 'Ins': 0, + 'Del': 0, + 'Sub': 0, + 'Snt': 0, + 'Err': 0.0, + 'S.Err': 0.0, + 'wrong_words': 0, + 'wrong_sentences': 0 + } + + hyp_dict = {} + ref_dict = {} + with open(hyp_file, 'r') as hyp_reader: + for line in hyp_reader: + key = line.strip().split()[0] + value = line.strip().split()[1:] + hyp_dict[key] = value + with open(ref_file, 'r') as ref_reader: + for line in ref_reader: + key = line.strip().split()[0] + value = line.strip().split()[1:] + ref_dict[key] = value + + cer_detail_writer = open(cer_detail_file, 'w') + for hyp_key in hyp_dict: + if hyp_key in ref_dict: + out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key]) + rst['Wrd'] += out_item['nwords'] + rst['Corr'] += out_item['cor'] + rst['wrong_words'] += out_item['wrong'] + rst['Ins'] += out_item['ins'] + rst['Del'] += out_item['del'] + rst['Sub'] += out_item['sub'] + rst['Snt'] += 1 + if out_item['wrong'] > 0: + rst['wrong_sentences'] += 1 + cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n') + cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n') + cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n') + + if rst['Wrd'] > 0: + rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2) + if rst['Snt'] > 0: + rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2) + + cer_detail_writer.write('\n') + cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) + + ", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n') + cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n') + cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n') + + +def compute_wer_by_line(hyp, + ref): + hyp = list(map(lambda x: x.lower(), hyp)) + ref = list(map(lambda x: x.lower(), ref)) + + len_hyp = len(hyp) + len_ref = len(ref) + + cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16) + + ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8) + + for i in range(len_hyp + 1): + cost_matrix[i][0] = i + for j in range(len_ref + 1): + cost_matrix[0][j] = j + + for i in range(1, len_hyp + 1): + for j in range(1, len_ref + 1): + if hyp[i - 1] == ref[j - 1]: + cost_matrix[i][j] = cost_matrix[i - 1][j - 1] + else: + substitution = cost_matrix[i - 1][j - 1] + 1 + insertion = cost_matrix[i - 1][j] + 1 + deletion = cost_matrix[i][j - 1] + 1 + + compare_val = [substitution, insertion, deletion] + + min_val = min(compare_val) + operation_idx = compare_val.index(min_val) + 1 + cost_matrix[i][j] = min_val + ops_matrix[i][j] = operation_idx + + match_idx = [] + i = len_hyp + j = len_ref + rst = { + 'nwords': len_ref, + 'cor': 0, + 'wrong': 0, + 'ins': 0, + 'del': 0, + 'sub': 0 + } + while i >= 0 or j >= 0: + i_idx = max(0, i) + j_idx = max(0, j) + + if ops_matrix[i_idx][j_idx] == 0: # correct + if i - 1 >= 0 and j - 1 >= 0: + match_idx.append((j - 1, i - 1)) + rst['cor'] += 1 + + i -= 1 + j -= 1 + + elif ops_matrix[i_idx][j_idx] == 2: # insert + i -= 1 + rst['ins'] += 1 + + elif ops_matrix[i_idx][j_idx] == 3: # delete + j -= 1 + rst['del'] += 1 + + elif ops_matrix[i_idx][j_idx] == 1: # substitute + i -= 1 + j -= 1 + rst['sub'] += 1 + + if i < 0 and j >= 0: + rst['del'] += 1 + elif j < 0 and i >= 0: + rst['ins'] += 1 + + match_idx.reverse() + wrong_cnt = cost_matrix[len_hyp][len_ref] + rst['wrong'] = wrong_cnt + + return rst + +def print_cer_detail(rst): + return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor']) + + ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub=" + + str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords']) + + ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords'])) + +if __name__ == '__main__': + if len(sys.argv) != 4: + print("usage : python compute-wer.py test.ref test.hyp test.wer") + sys.exit(0) + + ref_file = sys.argv[1] + hyp_file = sys.argv[2] + cer_detail_file = sys.argv[3] + compute_wer(ref_file, hyp_file, cer_detail_file) diff --git a/examples/industrial_data_pretraining/paraformer/finetune.sh b/examples/industrial_data_pretraining/paraformer/finetune.sh index 394861b77..8bdd8daaf 100644 --- a/examples/industrial_data_pretraining/paraformer/finetune.sh +++ b/examples/industrial_data_pretraining/paraformer/finetune.sh @@ -6,10 +6,10 @@ #git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path} ## generate jsonl from wav.scp and text.txt -python funasr/datasets/audio_datasets/scp2jsonl.py \ -++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \ -++data_type_list='["source", "target"]' \ -++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl +#python funasr/datasets/audio_datasets/scp2jsonl.py \ +#++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \ +#++data_type_list='["source", "target"]' \ +#++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl # torchrun \ @@ -24,5 +24,4 @@ python funasr/bin/train.py \ ++dataset_conf.batch_type="example" \ ++train_conf.max_epoch=2 \ ++dataset_conf.num_workers=4 \ -+output_dir="outputs/debug/ckpt/funasr2/exp2" \ -+debug="true" \ No newline at end of file ++output_dir="outputs/debug/ckpt/funasr2/exp2" \ No newline at end of file diff --git a/examples/industrial_data_pretraining/paraformer/infer.sh b/examples/industrial_data_pretraining/paraformer/infer_demo.sh similarity index 99% rename from examples/industrial_data_pretraining/paraformer/infer.sh rename to examples/industrial_data_pretraining/paraformer/infer_demo.sh index 7491e98b5..f9a03f9ea 100644 --- a/examples/industrial_data_pretraining/paraformer/infer.sh +++ b/examples/industrial_data_pretraining/paraformer/infer_demo.sh @@ -9,3 +9,6 @@ python funasr/bin/inference.py \ +output_dir="./outputs/debug" \ +device="cpu" \ + + +