-
Notifications
You must be signed in to change notification settings - Fork 757
/
Copy pathflex_text_to_image.py
49 lines (41 loc) · 1.51 KB
/
flex_text_to_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from diffsynth import ModelManager, FluxImagePipeline, download_models
from diffsynth.controlnets.processors import Annotator
import numpy as np
from PIL import Image
download_models(["FLUX.1-dev"])
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda")
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
"models/ostris/Flex.2-preview/Flex.2-preview.safetensors"
])
pipe = FluxImagePipeline.from_model_manager(model_manager)
image = pipe(
prompt="portrait of a beautiful Asian girl, long hair, red t-shirt, sunshine, beach",
num_inference_steps=50, embedded_guidance=3.5,
seed=0
)
image.save("image_1.jpg")
mask = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask[200:400, 400:700] = 255
mask = Image.fromarray(mask)
mask.save("image_mask.jpg")
inpaint_image = image
image = pipe(
prompt="portrait of a beautiful Asian girl with sunglasses, long hair, red t-shirt, sunshine, beach",
num_inference_steps=50, embedded_guidance=3.5,
flex_inpaint_image=inpaint_image, flex_inpaint_mask=mask,
seed=4
)
image.save("image_2.jpg")
control_image = Annotator("canny")(image)
control_image.save("image_control.jpg")
image = pipe(
prompt="portrait of a beautiful Asian girl with sunglasses, long hair, yellow t-shirt, sunshine, beach",
num_inference_steps=50, embedded_guidance=3.5,
flex_control_image=control_image,
seed=4
)
image.save("image_3.jpg")