-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
50 lines (35 loc) · 978 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import pandas as pd
import matplotlib.colors as colors
import matplotlib.cm as cmx
from mpl_toolkits.axes_grid1 import make_axes_locatable
# Generating sample data
adjacency_matrix = nx.from_numpy_matrix(
np.load("minibench_nasbench201_distance_matrix.npy")
)
print(adjacency_matrix)
df: pd.DataFrame = pd.read_pickle("minibench/mini-bench-arch-cell-accs.pd")
df
fig, ax = plt.subplots()
accuracies = []
for i in range(1000):
accuracies.append(df.iloc[i]["cifar10-test"])
options = {
"node_color": accuracies,
"node_size": 20,
"edge_color": "white",
"linewidths": 0,
"width": 0.1,
}
nx.draw(adjacency_matrix, **options, ax=ax)
vmin = min(accuracies)
vmax = max(accuracies)
scalar_map = cmx.ScalarMappable(
cmap=plt.get_cmap("viridis"), norm=plt.Normalize(vmin=vmin, vmax=vmax)
)
scalar_map.set_array([])
plt.colorbar(scalar_map)
plt.axis("equal")
plt.show()