diff --git "a/analys_b/20231027/4b-kurvl\303\244ngd.tex" "b/analys_b/20231027/4b-kurvl\303\244ngd.tex" index 7f44350..1f52ac8 100644 --- "a/analys_b/20231027/4b-kurvl\303\244ngd.tex" +++ "b/analys_b/20231027/4b-kurvl\303\244ngd.tex" @@ -35,5 +35,25 @@ \noindent\rule{\textwidth}{0.5pt} +\begin{equation} + \Delta s \approx \sqrt{x'(t)^2 + y'(t)^2}dt. + \label{eq:kurvlangd} +\end{equation} + +Lösning: + +\begin{align} + x'(t) &= e^t - e^{-t}\\ + y'(t) &= 2 +\end{align} + +\begin{align} + \int_0^2 \sqrt{x'(t)^2 + y'(t)^2} dt &= \int_0^2 \sqrt{\left(e^t - e^{-t}\right)^2 + 2^2} dt \\ + \int_0^2 \sqrt{e^{2t} + e^{-2t} + 2} dt &= \left[\begin{aligned} + u &= e^{2t} + e^{-2t} + 2\\ + \frac{du}{dt} &= 2e^{2t} - 2e^{-2t} \Leftrightarrow \frac{du}{2} = e^{2t} - e^{-2t}dt + \end{aligned}\right] +\end{align} + \end{document}