diff --git a/analys_b/20230821/1c-generaliserade_integral.tex b/analys_b/20230821/1c-generaliserade_integral.tex index 19a1614..7fc2a8d 100644 --- a/analys_b/20230821/1c-generaliserade_integral.tex +++ b/analys_b/20230821/1c-generaliserade_integral.tex @@ -28,5 +28,48 @@ \int_0^{\infty} \frac{e^{-x}}{\sqrt{1 + e^{-x}}} dx \] är konvergent och beräkna den i så fall. + +\noindent\rule{\textwidth}{0.5pt} + +Lösning: + +\begin{align} + \int_0^{\infty} \frac{e^{-x}}{\sqrt{1 + e^{-x}}} dx &= + \left[\begin{aligned} + t &= -x\\ + \frac{dt}{dx} &= -1 \ \Leftrightarrow\ dt = -dx + \end{aligned}\right] \\ + &= \int_{0}^{\infty} \frac{e^t}{\sqrt{1 + e^t}} dt = + \left[\begin{aligned} + u &= 1 + e^t\\ + \frac{du}{dt} &= e^t \ \Leftrightarrow\ du = e^t dt + \end{aligned}\right] \\ + &= \int_0^\infty -\frac{1}{\sqrt{u}} du \\ + &= \left[\ -2\sqrt{u}\ \right]_0^{\infty} +\end{align} + +Vi byter tillbaka variabel $u = 1 + e^t$ + +\begin{equation} + \left[-2\sqrt{1 + e^t}\ \right]_0^{\infty}. +\end{equation} + +Och $t = -x$ + +\begin{equation} + \left[-2\sqrt{1 + e^{-x}}\ \right]_0^{\infty}. +\end{equation} + +Beräkna integralen + +\begin{align} + \lim_{T \rightarrow \infty} \left(\left(-2\sqrt{1 + e^{-T}}\right) - \left(-2\sqrt{1 + e^{-0}}\right)\right) + &= \left(\left(-2\sqrt{1 + 0}\right) - \left(-2\sqrt{2}\right)\right) \\ + &= 2\sqrt{2} - 2\\ + &= 2(\sqrt{2} - 1) +\end{align} + +Svar: Ja, generaliserade integralen är konvergent med värde $2(\sqrt{2} - 1)$ + \end{document}