diff --git a/analysb/20231027/2a-koefficient-polynom.tex b/analysb/20231027/2a-koefficient-polynom.tex index 0e12adf..5a40ac0 100644 --- a/analysb/20231027/2a-koefficient-polynom.tex +++ b/analysb/20231027/2a-koefficient-polynom.tex @@ -24,5 +24,38 @@ \begin{document} Vad är koefficienten för $x^5$ i polynomet $(x + 2)^8$? + +\noindent\rule{\textwidth}{0.5pt} + +\textbf{Binomialkoefficient} (s.56) + +\[ + \binom{n}{k} = \frac{n!}{k!(n - k)!} = \frac{n \cdot (n - 1) \cdot ... \cdot (n - k + 1)}{k \cdot (k - 1) \cdot ... \cdot 1} +\] + +\textbf{Sats 4.3}: (Binomialsatsen). \textit{För varje heltal} $n \leq 0$ \textit{gäller} (s.57) + +\[ + (a + b)^n = a^n + \tbinom{n}{1}a^{n - 1}b^1 + \tbinom{n}{2}a^{n - 2}b^2 + ... + \tbinom{n}{n - 1}a^1 b^{n - 1} + b^n. +\] + +Lösning: + +\[ + (x + 2)^8 = x^8 + \tbinom{8}{1}x^7 \cdot 2^1 + \tbinom{8}{2}x^6 \cdot 2^2 + \tbinom{8}{3}x^5 \cdot 2^3 + \tbinom{8}{4}x^4 \cdot 2^4 + \tbinom{8}{5}x^3 \cdot 2^5 + \tbinom{8}{6}x^2 \cdot 2^6 + \tbinom{8}{7}x^1 \cdot 2^7 + 2^8 +\] + +Vi är intresserad i $\tbinom{8}{3}x^5 \cdot 2^3$. + +\begin{align*} + \tbinom{8}{3}x^5 \cdot 2^3 &= \frac{8!}{3!(8 - 3)!} \cdot x^5 \cdot 2^3\\ + &= \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3! \cdot 5!} \cdot 8x^5\\ + &= \frac{8 \cdot 7 \cdot 6 }{3 \cdot 2 \cdot 1} \cdot 8x^5\\ + &= 4 \cdot 7 \cdot 2 \cdot 8x^5\\ + &= 448x^5 +\end{align*} + +Svar: $448x^5$ + \end{document}