diff --git a/analys_b/20230821/2a-differentialekvation_if.tex b/analys_b/20230821/2a-differentialekvation_if.tex index bfcfbc2..53af72e 100644 --- a/analys_b/20230821/2a-differentialekvation_if.tex +++ b/analys_b/20230821/2a-differentialekvation_if.tex @@ -24,6 +24,46 @@ \setcounter{secnumdepth}{0} % Disable section numbering \begin{document} + Lösbegynnelsevärdesproblemet $y' + x \cdot y = e^{-x^2 / 2}$, $y(0) = 5$. + +\noindent\rule{\textwidth}{0.5pt} + + +Lösning: Vi använder oss av integerande faktor. + +\begin{equation} + y' + x \cdot y = e^{-x^2 / 2} +\end{equation} + +$g(x) = x$, $G(x) = \frac{1}{2}x^2$, IF = $e^{\frac{1}{2}x^2}$ + +\begin{equation} + e^{\frac{1}{2}x^2} \cdot y' + e^{\frac{1}{2}x^2} \cdot x \cdot y = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2} +\end{equation} + +\begin{equation} + \frac{d}{dx}\left(y \cdot e^{\frac{1}{2}x^2}\right) = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2} +\end{equation} + +\begin{align} + y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2} dx\\ + y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2 - \frac{1}{2}x^2} dx \\ + y \cdot e^{\frac{1}{2}x^2} &= \int e^0 dx = \int 1 dx \\ + y \cdot e^{\frac{1}{2}x^2} &= x + C\\ + y &= (x + C) \cdot e^{-\frac{1}{2}x^2} \\ + y &= xe^{-\frac{1}{2}x^2} + Ce^{-\frac{1}{2}x^2} \\ +\end{align} + +För $y(0) = 5$ + +\begin{align} + 5 &= xe^{-\frac{1}{2}0^2} + Ce^{-\frac{1}{2}0^2} \\ + 5 &= 0 + C \\ + C &= 5 +\end{align} + +Svar: $y(x) = xe^{-\frac{1}{2}x^2} + 5e^{-\frac{1}{2}x^2}$ + \end{document}