Skip to content

Commit

Permalink
Löst Analys B 20230821 2a differentialekvation
Browse files Browse the repository at this point in the history
  • Loading branch information
mnerv committed Jan 10, 2024
1 parent fd9d68c commit 3d3d47c
Showing 1 changed file with 40 additions and 0 deletions.
40 changes: 40 additions & 0 deletions analys_b/20230821/2a-differentialekvation_if.tex
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,46 @@
\setcounter{secnumdepth}{0} % Disable section numbering

\begin{document}

Lösbegynnelsevärdesproblemet $y' + x \cdot y = e^{-x^2 / 2}$, $y(0) = 5$.

\noindent\rule{\textwidth}{0.5pt}


Lösning: Vi använder oss av integerande faktor.

\begin{equation}
y' + x \cdot y = e^{-x^2 / 2}
\end{equation}

$g(x) = x$, $G(x) = \frac{1}{2}x^2$, IF = $e^{\frac{1}{2}x^2}$

\begin{equation}
e^{\frac{1}{2}x^2} \cdot y' + e^{\frac{1}{2}x^2} \cdot x \cdot y = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2}
\end{equation}

\begin{equation}
\frac{d}{dx}\left(y \cdot e^{\frac{1}{2}x^2}\right) = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2}
\end{equation}

\begin{align}
y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2} dx\\
y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2 - \frac{1}{2}x^2} dx \\
y \cdot e^{\frac{1}{2}x^2} &= \int e^0 dx = \int 1 dx \\
y \cdot e^{\frac{1}{2}x^2} &= x + C\\
y &= (x + C) \cdot e^{-\frac{1}{2}x^2} \\
y &= xe^{-\frac{1}{2}x^2} + Ce^{-\frac{1}{2}x^2} \\
\end{align}

För $y(0) = 5$

\begin{align}
5 &= xe^{-\frac{1}{2}0^2} + Ce^{-\frac{1}{2}0^2} \\
5 &= 0 + C \\
C &= 5
\end{align}

Svar: $y(x) = xe^{-\frac{1}{2}x^2} + 5e^{-\frac{1}{2}x^2}$

\end{document}

0 comments on commit 3d3d47c

Please sign in to comment.