Skip to content

Commit 3d3d47c

Browse files
committed
Löst Analys B 20230821 2a differentialekvation
1 parent fd9d68c commit 3d3d47c

File tree

1 file changed

+40
-0
lines changed

1 file changed

+40
-0
lines changed

analys_b/20230821/2a-differentialekvation_if.tex

Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,46 @@
2424
\setcounter{secnumdepth}{0} % Disable section numbering
2525

2626
\begin{document}
27+
2728
Lösbegynnelsevärdesproblemet $y' + x \cdot y = e^{-x^2 / 2}$, $y(0) = 5$.
29+
30+
\noindent\rule{\textwidth}{0.5pt}
31+
32+
33+
Lösning: Vi använder oss av integerande faktor.
34+
35+
\begin{equation}
36+
y' + x \cdot y = e^{-x^2 / 2}
37+
\end{equation}
38+
39+
$g(x) = x$, $G(x) = \frac{1}{2}x^2$, IF = $e^{\frac{1}{2}x^2}$
40+
41+
\begin{equation}
42+
e^{\frac{1}{2}x^2} \cdot y' + e^{\frac{1}{2}x^2} \cdot x \cdot y = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2}
43+
\end{equation}
44+
45+
\begin{equation}
46+
\frac{d}{dx}\left(y \cdot e^{\frac{1}{2}x^2}\right) = e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2}
47+
\end{equation}
48+
49+
\begin{align}
50+
y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2} \cdot e^{-x^2 / 2} dx\\
51+
y \cdot e^{\frac{1}{2}x^2} &= \int e^{\frac{1}{2}x^2 - \frac{1}{2}x^2} dx \\
52+
y \cdot e^{\frac{1}{2}x^2} &= \int e^0 dx = \int 1 dx \\
53+
y \cdot e^{\frac{1}{2}x^2} &= x + C\\
54+
y &= (x + C) \cdot e^{-\frac{1}{2}x^2} \\
55+
y &= xe^{-\frac{1}{2}x^2} + Ce^{-\frac{1}{2}x^2} \\
56+
\end{align}
57+
58+
För $y(0) = 5$
59+
60+
\begin{align}
61+
5 &= xe^{-\frac{1}{2}0^2} + Ce^{-\frac{1}{2}0^2} \\
62+
5 &= 0 + C \\
63+
C &= 5
64+
\end{align}
65+
66+
Svar: $y(x) = xe^{-\frac{1}{2}x^2} + 5e^{-\frac{1}{2}x^2}$
67+
2868
\end{document}
2969

0 commit comments

Comments
 (0)