forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththreading.cpp
184 lines (157 loc) · 6.5 KB
/
threading.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <gtest/gtest.h>
#include <chrono>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
#include "atomic_guard.hpp"
#include "openvino/core/model.hpp"
#include "openvino/core/node.hpp"
#include "openvino/core/node_vector.hpp"
#include "openvino/opsets/opset8.hpp"
#include "ov_ops/type_relaxed.hpp"
using namespace ov;
using namespace std;
static std::shared_ptr<ov::Model> create_complex_function(size_t wide = 50) {
const auto& split_subgraph = [](const ov::Output<ov::Node>& input) -> ov::OutputVector {
auto relu = std::make_shared<ov::opset8::Relu>(input);
auto type_relaxed =
std::make_shared<ov::op::TypeRelaxed<ov::opset8::Asin>>(std::vector<element::Type>{element::f32},
std::vector<element::Type>{element::f32},
relu);
auto axis_node = ov::opset8::Constant::create(ov::element::i64, Shape{}, {1});
auto split = std::make_shared<ov::opset8::Split>(type_relaxed, axis_node, 2);
return split->outputs();
};
const auto& concat_subgraph = [](const ov::OutputVector& inputs) -> ov::Output<ov::Node> {
auto concat = std::make_shared<ov::opset8::Concat>(inputs, 1);
auto type_relaxed =
std::make_shared<ov::op::TypeRelaxed<ov::opset8::Asin>>(std::vector<element::Type>{element::f32},
std::vector<element::Type>{element::f32},
concat);
auto relu = std::make_shared<ov::opset8::Relu>(concat);
return relu->output(0);
};
auto parameter = std::make_shared<ov::opset8::Parameter>(ov::element::f32, ov::PartialShape::dynamic(4));
std::queue<ov::Output<ov::Node>> nodes;
{
auto outputs = split_subgraph(parameter->output(0));
for (const auto& out : outputs) {
nodes.push(out);
}
}
while (nodes.size() < wide) {
auto first = nodes.front();
nodes.pop();
auto outputs = split_subgraph(first);
for (const auto& out : outputs) {
nodes.push(out);
}
}
while (nodes.size() > 1) {
auto first = nodes.front();
nodes.pop();
auto second = nodes.front();
nodes.pop();
auto out = concat_subgraph(ov::OutputVector{first, second});
nodes.push(out);
}
auto result = std::make_shared<ov::opset8::Result>(nodes.front());
return std::make_shared<Model>(ov::ResultVector{result}, ov::ParameterVector{parameter});
}
TEST(threading, get_friendly_name) {
const size_t number = 20;
Shape shape{};
auto a = make_shared<ov::opset8::Parameter>(element::i32, shape);
auto iconst0 = ov::opset8::Constant::create(element::i32, Shape{}, {0});
auto add_a1 = make_shared<ov::opset8::Add>(a, iconst0);
auto add_a2 = make_shared<ov::opset8::Add>(add_a1, iconst0);
auto add_a3 = make_shared<ov::opset8::Add>(add_a2, iconst0);
auto abs_add_a3 = std::make_shared<ov::opset8::Abs>(add_a3);
auto b = make_shared<ov::op::v0::Parameter>(element::i32, shape);
auto add_b1 = make_shared<ov::opset8::Add>(b, iconst0);
auto add_b2 = make_shared<ov::opset8::Add>(add_b1, iconst0);
auto abs_add_b2 = std::make_shared<ov::opset8::Abs>(add_b2);
auto graph = make_shared<ov::opset8::Multiply>(abs_add_a3, abs_add_b2);
auto f = std::make_shared<Model>(ov::NodeVector{graph}, ParameterVector{a, b});
const auto compare_names = [](const std::vector<std::string>& names) {
static std::unordered_set<std::string> ref_names;
static std::once_flag flag;
std::call_once(flag, [&]() {
for (const auto& name : names)
ref_names.insert(name);
});
for (const auto& name : names) {
ASSERT_TRUE(ref_names.count(name));
}
};
const auto get_friendly_name = [&](const std::shared_ptr<ov::Model>& f) {
std::vector<std::string> names;
for (const auto& op : f->get_ops()) {
names.emplace_back(op->get_friendly_name());
}
compare_names(names);
};
std::vector<std::thread> threads(number);
for (auto&& thread : threads)
thread = std::thread(get_friendly_name, f);
for (auto&& th : threads) {
th.join();
}
}
TEST(threading, check_atomic_guard) {
std::atomic_bool test_val{false};
int result = 2;
const auto& thread1_fun = [&]() {
ov::AtomicGuard lock(test_val);
std::chrono::milliseconds ms{2000};
std::this_thread::sleep_for(ms);
result += 3;
};
const auto& thread2_fun = [&]() {
std::chrono::milliseconds ms{500};
std::this_thread::sleep_for(ms);
ov::AtomicGuard lock(test_val);
result *= 3;
};
std::vector<std::thread> threads(2);
threads[0] = std::thread(thread1_fun);
threads[1] = std::thread(thread2_fun);
for (auto&& th : threads) {
th.join();
}
ASSERT_EQ(result, 15);
}
TEST(threading, clone_with_new_inputs) {
auto function = create_complex_function(100);
const auto cloneNodes = [&](const std::shared_ptr<const ov::Model>& f) {
auto orderedOps = function->get_ordered_ops();
std::vector<std::shared_ptr<ov::Node>> nodes;
for (const auto& op : orderedOps) {
ov::OutputVector inputsForShapeInfer;
std::shared_ptr<ov::Node> opToShapeInfer;
const auto inSize = op->get_input_size();
for (size_t i = 0; i < inSize; i++) {
if (dynamic_cast<ov::opset8::Constant*>(op->get_input_node_ptr(i))) {
inputsForShapeInfer.push_back(op->get_input_node_ptr(i)->clone_with_new_inputs(ov::OutputVector{}));
} else {
inputsForShapeInfer.push_back(
std::make_shared<ov::opset8::Parameter>(op->get_input_element_type(i),
op->get_input_partial_shape(i)));
}
}
opToShapeInfer = op->clone_with_new_inputs(inputsForShapeInfer);
nodes.push_back(opToShapeInfer);
}
};
const size_t numThreads = 6;
std::vector<std::thread> threads(numThreads);
for (auto&& thread : threads)
thread = std::thread(cloneNodes, function);
for (auto&& th : threads) {
th.join();
}
}