Skip to content

Latest commit

 

History

History
63 lines (63 loc) · 2.62 KB

2025-01-12-selvan25a.md

File metadata and controls

63 lines (63 loc) · 2.62 KB
title openreview software abstract layout series publisher issn id month tex_title firstpage lastpage page order cycles bibtex_author author date address container-title volume genre issued pdf extras
PePR: Performance Per Resource Unit as a Metric to Promote Small-scale Deep Learning
Pb47B5t0pr
The recent advances in deep learning (DL) have been accelerated by access to large-scale data and compute. These large-scale resources have been used to train progressively larger models which are resource intensive in terms of compute, data, energy, and carbon emissions. These costs are becoming a new type of entry barrier to researchers and practitioners with limited access to resources at such scale, particularly in the Global South. In this work, we take a comprehensive look at the landscape of existing DL models for medical image analysis tasks and demonstrate their usefulness in settings where resources are limited. To account for the resource consumption of DL models, we introduce a novel measure to estimate the performance per resource unit, which we call the PePR score. Using a diverse family of 131 unique DL architectures (spanning $1M$ to $130M$ trainable parameters) and three medical image datasets, we capture trends about the performance-resource trade-offs. In applications like medical image analysis, we argue that small-scale, specialized models are better than striving for large-scale models. Furthermore, we show that using existing pretrained models that are fine-tuned on new data can significantly reduce the computational resources and data required compared to training models from scratch. We hope this work will encourage the community to focus on improving AI equity by developing methods and models with smaller resource footprints.
inproceedings
Proceedings of Machine Learning Research
PMLR
2640-3498
selvan25a
0
Pe{PR}: Performance Per Resource Unit as a Metric to Promote Small-scale Deep Learning
220
229
220-229
220
false
Selvan, Raghavendra and Pepin, Bob and Igel, Christian and Samuel, Gabrielle and Dam, Erik B
given family
Raghavendra
Selvan
given family
Bob
Pepin
given family
Christian
Igel
given family
Gabrielle
Samuel
given family
Erik B
Dam
2025-01-12
Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL)
265
inproceedings
date-parts
2025
1
12