title | booktitle | year | volume | series | month | publisher | url | openreview | abstract | layout | issn | id | tex_title | firstpage | lastpage | page | order | cycles | bibtex_editor | editor | bibtex_author | author | date | address | container-title | genre | issued | extras | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diffusion-based Adversarial Attack to Automatic Speech Recognition |
Proceedings of the 16th Asian Conference on Machine Learning |
2025 |
260 |
Proceedings of Machine Learning Research |
0 |
PMLR |
rmPwZmVaSp |
Recent studies have exposed the substantial vulnerability of voice-activated smart devices to adversarial examples, predominantly targeting the robustness of automatic speech recognition (ASR) systems. Most of adversarial examples generated by introducing adversarial perturbations within the |
inproceedings |
2640-3498 |
wang25f |
Diffusion-based Adversarial Attack to Automatic Speech Recognition |
889 |
904 |
889-904 |
889 |
false |
Nguyen, Vu and Lin, Hsuan-Tien |
|
Wang, Ying and Luo, Yuchuan and Fu, Shaojing and Qiu, Zhenyu and Liu, Lin |
|
2025-01-14 |
Proceedings of the 16th Asian Conference on Machine Learning |
inproceedings |
|