title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accumulations of Projections—A Unified Framework for Random Sketches in Kernel Ridge Regression |
Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nyström method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches. |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
chen21f |
0 |
Accumulations of Projections—A Unified Framework for Random Sketches in Kernel Ridge Regression |
2953 |
2961 |
2953-2961 |
2953 |
false |
Chen, Yifan and Yang, Yun |
|
2021-03-18 |
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics |
130 |
inproceedings |
|
|