-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_net.py
254 lines (227 loc) · 9.36 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from typing import Any, Dict, List, Set
import copy
import itertools
import os
import argparse
import torch
import torch.distributed as dist
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader
from detectron2.engine import (
DefaultTrainer,
default_setup,
)
from detectron2.evaluation import DatasetEvaluators, verify_results
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from uni_3d import (
Front3DDPSEvaluator,
Front3DEvaluator,
MatterportDPSEvaluator,
Front3DDPSDatasetMapper,
Front3DDatasetMapper,
Front3DTestDatasetMapper,
add_mask2former_config,
add_uni_3d_config,
)
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to MaskFormer.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each
builtin dataset. For your own dataset, you can simply create an
evaluator manually in your script and do not have to worry about the
hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "matterport_dps":
assert (
torch.cuda.device_count() > comm.get_rank()
), "MatterportDPSEvaluator currently do not work with multiple machines."
evaluator_list.append(MatterportDPSEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "front3d_dps":
assert (
torch.cuda.device_count() > comm.get_rank()
), "Front3DDPSEvaluator currently do not work with multiple machines."
evaluator_list.append(Front3DDPSEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "front3d":
evaluator_list.append(Front3DEvaluator(dataset_name))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def before_step(self):
super().before_step()
if self.cfg.GLOBAL.EMPTY_CACHE_BEFORE_STEP:
torch.cuda.empty_cache()
@classmethod
def build_train_loader(cls, cfg):
if cfg.INPUT.DATASET_MAPPER_NAME == "front3d_dps":
mapper = Front3DDPSDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
elif cfg.INPUT.DATASET_MAPPER_NAME == "front3d":
mapper = Front3DDatasetMapper(cfg, True)
return build_detection_train_loader(cfg, mapper=mapper)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
if cfg.INPUT.DATASET_MAPPER_NAME == "front3d":
mapper = Front3DTestDatasetMapper(cfg)
else:
mapper = None
return build_detection_test_loader(cfg, dataset_name, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
if "backbone" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
print(module_param_name)
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_mask2former_config(cfg)
add_uni_3d_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="uni_3d")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume from the checkpoint directory. "
"See documentation of `DefaultTrainer.resume_or_load()` for what it means.",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
print("Command Line Args:", args)
world_size = int(os.environ.get("WORLD_SIZE", 1))
if world_size > 1:
dist.init_process_group()
comm.create_local_process_group(int(os.environ["LOCAL_WORLD_SIZE"]))
if torch.cuda.is_available():
torch.cuda.set_device(comm.get_local_rank())
comm.synchronize()
main(args)