-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlong_term_prediction_showcase.py
211 lines (168 loc) · 9.32 KB
/
long_term_prediction_showcase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from model import PWN
from model.spectral_rnn import SpectralRNNConfig
from model.cwspn import CWSPNConfig
from util.plot import cmp_plot
from data_source import Mackey, ReadPowerPKL
from preprocessing import ZScoreNormalization
import torch
import numpy as np
import matplotlib.pyplot as plt
import pickle
plot_base_path = 'res/plots/'
model_base_path = 'res/models/'
experiments_base_path = 'res/experiments/'
config = SpectralRNNConfig()
config.normalize_fft = True
config.use_add_linear = False
config.rnn_layer_config.use_gated = True
config.rnn_layer_config.use_cg_cell = False
config.rnn_layer_config.use_residual = True
config.rnn_layer_config.learn_hidden_init = False
config.rnn_layer_config.use_linear_projection = True
config.window_size = 96
config.fft_compression = 4
config.use_cached_predictions = False
config_c = CWSPNConfig()
with open('./res/data_cache_pwr_long.pkl', 'rb') as f:
train_x, train_y, test_x, test_y, train_y_values, test_y_values, \
column_names, embedding_sizes, preprocessing = pickle.load(f)
# tmax = 1024 * 60
use_pred_as_input = True
former_context_timespan = preprocessing.context_timespan
former_prediction_timespan = preprocessing.prediction_timespan
preprocessing = ZScoreNormalization((0,), 2, 1, [True, True, True, False], context_timespan=15 * 96,
prediction_timespan=int(40 * 96), timespan_step=96,
single_group=False, multivariate=False, retail=False)
model = PWN(config, config_c, train_spn_on_gt=False, train_spn_on_prediction=True, ll_weight=1e-5,
ll_weight_inc_dur=50, westimator_early_stopping=8)
model_filepath = f'{model_base_path}07_19_2022_15_43_15__PWN-ReadPowerPKL' # change the file name after executing training.py
model.load(model_filepath)
x_raw, y_raw, _, _, _, _, _ = preprocessing.apply(ReadPowerPKL().data)
for key in [2018.0]: # x_raw.keys():
x = {'All': x_raw[key][-2:-1]}
y = {'All': y_raw[key][-2:-1]}
model.srnn.final_amt_pred_samples = preprocessing.prediction_timespan
model.srnn.net.amt_prediction_samples = preprocessing.prediction_timespan
model.srnn.net.amt_prediction_windows = model.srnn.net.stft(torch.from_numpy(y['All'][..., -1]).to('cuda')).shape[-1]
predictions, f_c = model.srnn.predict(x, 256, pred_label='Mackey_LT', return_coefficients=True)
lls = []
mses = []
lls_mpe = []
all_window_lls = []
cspn_width = model.westimator.amt_prediction_windows
for i in range(preprocessing.prediction_timespan // former_prediction_timespan):
time_start = i * former_prediction_timespan
time_start_input = (i - 1) * former_prediction_timespan
time_start_predictions = (i - former_context_timespan // former_prediction_timespan) * former_prediction_timespan
spectral_start = i * (cspn_width - 1)
local_p = predictions['All'][:, time_start:time_start + former_prediction_timespan]
local_y = y['All'][:, time_start:time_start + former_prediction_timespan, -1]
if use_pred_as_input:
if i == 0:
x_ = {'All': x['All'][..., -1]}
elif i < former_context_timespan / former_prediction_timespan:
x_ = {'All': np.concatenate([
x['All'][:, time_start:, -1],
predictions['All'][:, :time_start]], axis=1)}
else:
x_ = {'All': predictions['All'][:, time_start_predictions:time_start_predictions + former_context_timespan]}
else:
if i == 0:
x_ = {'All': x['All'][..., -1]}
elif i < former_context_timespan / former_prediction_timespan:
x_ = {'All': np.concatenate([
x['All'][:, time_start:, -1],
y['All'][:, :time_start, -1]], axis=1)}
else:
x_ = {'All': y['All'][:, time_start_predictions:time_start_predictions + former_context_timespan, -1]}
f_c_ = {'All': f_c['All'][:, spectral_start: spectral_start + cspn_width].reshape((f_c['All'].shape[0], -1))}
ll = model.westimator.predict(x_, f_c_, stft_y=False)
lls.append(ll['All'][0][0])
mpe = model.westimator.predict_mpe({key: np.expand_dims(x, axis=-1) for key, x in x_.items()},
{'All': np.zeros_like(local_y)})
ll_mpe = model.westimator.predict(x_, {key: v[0] for key, v in mpe.items()}, stft_y=False)
lls_mpe.append(ll_mpe['All'][0][0])
window_lls = model.westimator.predict_ll_per_window(x_, f_c_, stft_y=False)
all_window_lls.append(window_lls['All'][0])
mse = (local_p - local_y) ** 2
mses.append(mse.mean())
all_window_lls = [window for pred in all_window_lls for window in pred]
pred_ll = torch.zeros(preprocessing.prediction_timespan).cuda()
all_window_lls_merged = []
for i, window in enumerate(all_window_lls):
if 0 < i < len(all_window_lls) - 1 and (i + 1) % cspn_width == 0:
continue
if 0 < i < len(all_window_lls) - 1 and i % cspn_width == 0:
all_window_lls_merged.append((window + all_window_lls[i - 1]) / 2)
else:
all_window_lls_merged.append(window)
for i, window in enumerate(all_window_lls_merged):
w = window[0] * model.srnn.net.stft.window
if i == 0:
pred_ll[:config.step_width] += w[config.step_width:]
elif i == len(all_window_lls_merged) - 1:
pred_ll[-config.step_width:] += w[:config.step_width]
else:
pred_ll[(i - 1) * config.step_width:(i + 1) * config.step_width] += w
# We use the LR-Ratio here, based on train min / max ll
min_ll = -482.12857
max_ll = 264.2689
pred_lr = -2 * (pred_ll - max_ll)
max_lr_span = -2 * (min_ll - max_ll)
# Taking the square root here is the same as taking the square root of both likelihood ratios
confidence = .5 * torch.sqrt(pred_lr / max_lr_span).detach().cpu().numpy()
plt.plot(lls_mpe)
plt.title('MPE LLs')
plt.show()
plt.clf()
plt.plot(confidence)
plt.title(f'Pred Confidence: {key}')
plt.show()
plt.clf()
plt.plot(lls, label='LLs', color='blue')
ax2 = plt.twinx()
ax2.plot(mses, label='MSEs', color='red')
ax2.legend('upper right')
plt.legend('upper left')
plt.title(f'LLs vs MSE: {key}')
plt.show()
plt.clf()
llrs_lower, llrs_upper = predictions['All'][0] - confidence, predictions['All'][0] + confidence
center = preprocessing.context_timespan // 2
plt.arrow(center - 200, llrs_lower.min() - 0.05, -center + 230, 0, length_includes_head=True,
head_starts_at_zero=False, color='grey', head_width=0.25, head_length=45)
plt.arrow(center + 200, llrs_lower.min() - 0.05, center - 230, 0, length_includes_head=True,
head_starts_at_zero=False, color='grey', head_width=0.25, head_length=45)
plt.text(center, llrs_lower.min() - 0.05, 'Context', ha='center', va='center',
bbox=dict(facecolor='none', edgecolor='none'), fontdict={'color': 'grey'})
center = preprocessing.context_timespan + former_prediction_timespan // 2
plt.text(preprocessing.context_timespan + former_prediction_timespan // 2, llrs_lower.min() - 0.05, 'Standard\nPrediction',
ha='center', va='center',
bbox=dict(facecolor='none', edgecolor='none'), fontdict={'color': 'grey'})
center = preprocessing.context_timespan + former_prediction_timespan + \
(model.srnn.final_amt_pred_samples - former_prediction_timespan) // 2
plt.arrow(center - 535, llrs_lower.min() - 0.05, -(model.srnn.final_amt_pred_samples - former_prediction_timespan) // 2 + 565, 0,
length_includes_head=True, head_starts_at_zero=False, color='grey', head_width=0.25, head_length=45)
plt.arrow(center + 535, llrs_lower.min() - 0.05, (model.srnn.final_amt_pred_samples - former_prediction_timespan) // 2 - 565, 0,
length_includes_head=True, head_starts_at_zero=False, color='grey', head_width=0.25, head_length=45)
plt.text(center, llrs_lower.min() - 0.05, 'Long-Range Prediction', ha='center', va='center',
bbox=dict(facecolor='none', edgecolor='none'), fontdict={'color': 'grey'})
plt.vlines([preprocessing.context_timespan, preprocessing.context_timespan + former_prediction_timespan], ymin=-30, ymax=30,
colors='grey', linestyles='dashed',
linewidth=5.5)
plt.plot(range(preprocessing.context_timespan + model.srnn.final_amt_pred_samples),
np.concatenate([x['All'][0, :, -1], y['All'][0, :, -1]]), label='Ground Truth', color='C1', linewidth=5.5)
plt.plot(range(preprocessing.context_timespan, preprocessing.context_timespan + model.srnn.final_amt_pred_samples),
predictions['All'][0], label='Prediction', color='C0', linestyle='dashed', linewidth=5.5)
plt.fill_between(range(preprocessing.context_timespan,
preprocessing.context_timespan + model.srnn.final_amt_pred_samples),
llrs_lower, llrs_upper, alpha=0.2, facecolor='green', label='LLRS')
plt.ylim([llrs_lower.min() - 1.2, llrs_upper.max() + 0.2])
leg = plt.legend(loc='upper left')
for legobj in leg.legendHandles:
legobj.set_linewidth(5.5)
plt.xlabel('Time')
plt.ylabel('Power (z-score normalized)')
plt.savefig(f'Uncertainty_Power.pdf', bbox_inches='tight')
plt.show()
plt.clf()