-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMoment.hs
79 lines (58 loc) · 2.18 KB
/
Moment.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
module Moment where
import Data.List
import Data.Function (on)
import Angles
data Sign = Plus | Minus deriving (Eq)
instance Show Sign where
show Plus = "+"
show Minus = "-"
type Multiplier = [Int]
newtype Moment' = M' [(Sign,Int)] deriving (Eq)
newtype Moment = M {moments :: [(Sign,Int,Multiplier)]} deriving (Eq)
instance Num Moment where
M a + M b = M (a ++ b)
negate = negateMoment
negateMoment (M m) = M $ map negateOne m where
negateOne (Plus,p,a) = (Minus,p,a)
negateOne (Minus,p,a) = (Plus,p,a)
emptyMoment' = M' []
emptyMoment = M []
showOneM 0 = "p"
showOneM i = "q_" ++ show i
showMoment' (M' []) = "0"
showMoment' (M' cs) = concatMap showOne cs where
showOne (s,c) = show s ++ showOneM c
instance Show Moment' where
show = showMoment'
showMultiplier ms =
concat $ intersperse "*" (map showOne ms) where
showOne m = "a_" ++ show m
showMoment (M []) = "0"
showMoment (M cs) = concatMap showOne cs where
showOne (s,c,mult) = (show s) ++ multStr ++ starStr ++ (showOneM c) where
starStr | null multStr = ""
| otherwise = "*"
multStr = showMultiplier mult
instance Show Moment where
show = showMoment
addZeroMults (M' m') = M $ map (\(s,c) -> (s,c,[])) m'
hasMoment (M m) n = n `elem` ns where
(_,ns,_) = unzip3 m
removeMoment (M m) n =
M $ deleteBy ((==) `on` (\(_,x,_) -> x)) (Plus,0,[]) m
-- stretch the moment by a_n factor along given list of basic moments
momentStretch (M m) n l = M $ map stretchOne m where
stretchOne (s,q,a) | q `elem` l = (s,q,n:a)
| otherwise = (s,q,a)
isStretchedBy (M m) n = any (elem n) mults where
(_,_,mults) = unzip3 m
momentUnStretch (M m) n = M $ map unStretchOne m where
unStretchOne (s,q,a) = (s,q,delete n a)
stringifySquare (M []) n pairs = "0"
stringifySquare (M m) n pairs = intercalate "+" (sqs ++ ps) where
sqs = map makeSquare m where
makeSquare (_,q,a) = "(" ++ (show $ M [(Plus,q,a)]) ++ ")**2"
ps = map makePaired [x | x <- subsequences m, length x == 2] where
makePaired [x@(s,q,a),x'@(s',q',a')] =
"2*(" ++ show (M [x]) ++ ")*(" ++ show (M [x']) ++ ")*" ++ cosStr where
cosStr = "(" ++ (stringifyCos $ cosP (makePair q q') n pairs) ++ ")"