
Concurrent tree exploration algorithm

Mateusz Kobos

September 24, 2011

1 Introduction

We introduce a tree exploring algorithm with concurrent threads (or processes) traversing a
tree.

The main assumption of the algorithm is:

• moving between nodes and processing them is time-consuming (expensive).

This assumption is particularly true in the application domain of our interest. In this
domain the threads are independent web crawlers which explore tree-like web page document
structure.

All of the threads share a common tree data structure which represents the part of the
whole tree that has been already explored by the threads. The main task of this tree data
structure is to share information between threads about nodes that were already visited or
are processed at the moment. Out of convenience, in the rest of this paper we reference this
tree data structure simply as “the tree”; on the other hand, the tree that is explored by
the algorithm is referenced as “the domain tree”.

The general structure of the tree data structure is shown in Fig. 1. We can see that the
root node which normally has no parent, here has a parent called “sentinel”. The sentinel
is a purely technical node devised to make the crawling algorithm easier to write down. The
sentinel node has no parent and only one child – the “root”.

2 General description of the algorithm

During the algorithm execution, new nodes are added to the tree; the nodes already in the
tree are never removed. Each node has a state and this state is changed by the threads that
visit the node. When a node is added to the tree, it has an initial state called OPEN, which
means that it has not been entered/visited by any thread.

Let us consider the algorithm executed by a single thread. We assume that the thread
is currently in a certain node and wants to descend into one of its children nodes. First, it
fetches children nodes from the domain tree and adds appropriate nodes corresponding to
them to the tree. Then, it checks if there is any OPEN (non-visited) node available. If this

1

sentinel

root

Figure 1: Traversed tree.

is the case, it descends into this node. We explore the OPEN (non-visited) nodes in the first
place because when exploring such a node, the thread does not get into the way of other
threads that might be exploring the same part of the tree. If there were no OPEN nodes
available, it checks if there is any VISITED node available. If this is the case, it descends
into this node. The node is in the VISITED state if it is an internal node and some thread
has already visited it and is currently in some direct or indirect child of this node. If there
is no such node available, it checks if there are any PROCESSING nodes available. The
node is in the PROCESSING state if some thread is currently analyzing it. If there are such
nodes, the thread waits until at least one of them is processed then checks again the state
of the children. If each of these tests failed, it means that there are no children that can be
explored. In such case, the thread moves upwards, to the parent of the node it is currently
in.

While visiting a node, the thread changes the node state. See Fig. 2 for an overview how
these states are changed. The thread changes the node’s state to CLOSED when the whole
subtree with a root in this node has been explored and processed and, as a consequence,
there is no use for other threads to descend into this node. The thread changes the node’s
state to ERROR if some error occurred in one of its direct and indirect children and all other
direct and indirect children are CLOSED (or are in the ERROR state). The advantage of
this way of marking the erroneous nodes is that we can easily check after the algorithm’s
execution which part of the tree was affected by the error. What is more, if we want to try
to analyze again the error nodes, it is sufficient to change all of the ERROR states in the
tree to VISITED states and run the algorithm once again.

Note, that after the node is processed, its state is changed by the thread either to

2

OPEN PROCESSING VISITED

CLOSED

ERROR

is leaf all children
are CLOSED

at least one child is in ERROR state,
other children are CLOSED

error while
processing

is internal
node

the first visit
of a thread

Figure 2: Possible states of a single node and passages between them.

CLOSED, ERROR, or VISITED. In case of the change to CLOSED and ERROR states
we have to check the states of the node’s siblings to see if wee should also change the state
of the parent node. If all of the children of node’s parent are now in CLOSED state, the
parent’s state has also be set to CLOSED. If at least one child is in ERROR state and other
children are in CLOSED state, the parent’s state has to be set to ERROR. These updates
have to be done recursively.

3 Detailed description of the algorithm

In Sect. 2 we describe how the algorithm works from a high-level perspective. That per-
spective did not take into consideration challenges that are present when a single tree data
structure is accessed concurrently. Here we present a more detailed description in a form a
Python-like pseudocode.

1 class Node : # the t r e e ’ s node s t r u c t u r e
2 s t a t e # s t a t e o f the node
3 parent # parent node
4 ch i l d r en # ch i l d r en nodes
5 # a cond i t i on o b j e c t used f o r b l o c k i n g acces s to node ’ s c h i l d r en
6 ch i l d r en cond
7

8 while True :
9 node = g e t s e n t i n e l () # obta in the s e n t i n e l node

10 try :
11 while True :
12 node = ana lyze ch i ld r en and move to next node (node)
13 i f node i s None : # The whole t r e e has been t r a v e r s ed
14 return
15 except Exception as ex :
16 pass

3

17

18 # return the node we ’ re cu r r en t l y in
19 def ana lyze ch i ld r en and move to next node (node) :
20 (ch i ld , a c t i on) = g e t a v a i l a b l e c h i l d (node)
21 i f ch i l d i s None :
22 return node . parent
23 else :
24 node = ch i l d
25 i f ac t i on == TO PROCESS:
26 # the f o l l ow i n g func t i on re turns True i f f the g iven node i s

a l e a f
27 i s l e a f = p r o c e s s n o d e a n d c h e c k i f i s l e a f (node)
28 s e t node type (node , i s l e a f)
29 i f i s l e a f :
30 return node . parent
31 else :
32 return node
33 e l i f ac t i on == TO VISIT :
34 return node
35

36 def g e t a v a i l a b l e c h i l d (node) :
37 while True :
38 node . ch i l d r en cond . acqu i r e ()
39 ch i l d = i n t e r n a l g e t a v a i l a b l e c h i l d (node)
40 i f ch i l d i s None : # No a c c e s s i b l e c h i l d r en are a v a i l a b l e
41 node . ch i l d r en cond . r e l e a s e ()
42 return (None , None)
43 i f ch i l d . s t a t e == OPEN:
44 ch i l d . s t a t e = PROCESSING
45 node . ch i l d r en cond . r e l e a s e ()
46 return (ch i ld , TO PROCESS)
47 e l i f ch i l d . s t a t e == VISITED :
48 node . ch i l d r en cond . r e l e a s e ()
49 return (ch i ld , TO VISIT)
50 e l i f ch i l d . s t a t e == PROCESSING:
51 node . ch i l d r en cond . wait ()
52 node . ch i l d r en cond . r e l e a s e ()
53

54 def i n t e r n a l g e t a v a i l a b l e c h i l d (node) :
55 # I f t he r e i s a c h i l d in OPEN s t a t e a v a i l a b l e , re turn i t . Otherwise

, check
56 # i f t he r e i s a c h i l d in VISITED s t a t e . I f t h e r e i s , re turn i t .

Otherwise ,
57 # check i f t h e r e i s a c h i l d in PROCESSING s t a t e . I f t h e r e i s ,

re turn i t ,

4

58 # otherw i s e re turn None .
59

60 def s e t node type (node , i s l e a f) :
61 node . parent . g e t ch i l d r en cond () . a cqu i r e ()
62 i f i s l e a f :
63 node . s t a t e = CLOSED
64 i n t e r na l upda t e nod e s t a t e (node . parent)
65 else :
66 node . s t a t e = VISITED
67 node . parent . ch i l d r en cond . n o t i f y a l l ()
68 node . parent . ch i l d r en cond . r e l e a s e ()
69

70 def i n t e r na l upda t e nod e s t a t e (node) :
71 i f node == s e n t i n e l :
72 # The s t a t e o f the s e n t i n e l i s undef ined and not used
73 # in the a lgor i thm , i t shou ld not be changed
74 return
75 new state = None
76 i f a l l c h i l d r e n a r e i n o n e o f s t a t e s (node , {CLOSED}) :
77 new state = CLOSED
78 e l i f a l l c h i l d r e n a r e i n o n e o f s t a t e s (node , {ERROR, CLOSED}) :
79 new state = ERROR
80 # Node s t a t e does not have to be changed
81 i f new state i s None :
82 return
83 node . parent . ch i l d r en cond . acqu i r e ()
84 node . s t a t e = new state
85 i n t e r na l upda t e nod e s t a t e (node . parent)
86 node . parent . ch i l d r en cond . n o t i f y a l l ()
87 node . parent . ch i l d r en cond . r e l e a s e ()
88

89 def a l l c h i l d r e n a r e i n o n e o f s t a t e s (node , s e t o f s t a t e s) :
90 # return True i f f a l l o f the node ’ s c h i l d r en are in one o f the

g iven s t a t e s
91

92 def hand l e e r r o r (node) :
93 # This func t i on i s c a l l e d when one an error occurs wh i l e v i s i t i n g a
94 # cer t a i n node .
95 s e t e r r o r (node)
96 raise Exception ()
97

98 def s e t e r r o r (node) :
99 node . parent . ch i l d r en cond . acqu i r e ()

100 node . s t a t e = ERROR
101 i n t e r na l upda t e nod e s t a t e (node . parent)

5

102 node . parent . ch i l d r en cond . n o t i f y a l l ()
103 node . parent . ch i l d r en cond . r e l e a s e ()

See also Fig. 3 which shows how an example update of a node state is propagated upwards
the tree.

sentinel

root

CLOSED
PROCESSING -> CLOSED

VISITED -> CLOSED CLOSED CLOSED

CLOSED CLOSED CLOSED

OPEN VISITED

PROCESSING

OPEN VISITED

VISITED -> CLOSED

VISITED

1

2

3 4 5

6 7 8 9 10

11 12 13 14 15 16

Figure 3: Updating the state of the nodes from the bottom to the top. Here a state of
the node 12 changed from PROCESSING to CLOSED. As a consequence, the state of
appropriate direct and indirect parent nodes’ is changed. The rectangle embracing sibling
nodes denotes that the condition object corresponding to them is locked during the update.

6

	Introduction
	General description of the algorithm
	Detailed description of the algorithm

