-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtimeseries_heatmap.py
123 lines (92 loc) · 6.64 KB
/
timeseries_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import streamlit as st
import pandas as pd
import plotly.express as px
import datetime
import base64
def download_csv(name,df):
csv = df.to_csv()
base = base64.b64encode(csv.encode()).decode()
file = (f'<a href="data:file/csv;base64,{base}" download="%s.csv">Download file</a>' % (name))
return file
def heatmap(df):
month_hours = {'January': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'February': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'March': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'April': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'May': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'June': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'July': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'August': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'September': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'October': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'November': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None},
'December': {'12AM': None, '01AM': None, '02AM': None, '03AM': None, '04AM': None, '05AM': None,
'06AM': None, '07AM': None, '08AM': None, '09AM': None, '10AM': None, '11AM': None,
'12PM': None, '01PM': None, '02PM': None, '03PM': None, '04PM': None, '05PM': None,
'06PM': None, '07PM': None, '08PM': None, '09PM': None, '10PM': None, '11PM': None}
}
for i in range(len(df)):
month_hours[df.iloc[i][0]][df.iloc[i][1]] = df.loc[i]['Value']
data_rows = list(month_hours.values())
data = []
for i in range(0,len(data_rows)):
data.append(list(data_rows[i].values()))
fig = px.imshow(data,
labels=dict(x="Hour", y="Month", color="Value"),
x=['12AM','01AM','02AM','03AM','04AM','05AM',
'06AM','07AM','08AM','09AM','10AM','11AM',
'12PM','01PM','02PM','03PM','04PM','05PM',
'06PM','07PM','08PM','09PM','10PM','11PM'],
y=['January','February','March','April','May','June',
'July','August','September','October','November','December']
)
st.write(fig)
return month_hours
if __name__ == '__main__':
df = pd.read_csv('C:/Users/..../data.csv')
for i in range(0,len(df)):
while len(str(df.iloc[i][1]).replace('.0','')) < 4:
df.iloc[i,1] = '0' + str(df.iloc[i][1]).replace('.0','')
temp = datetime.datetime.strptime(str(df.iloc[i][0]).replace('.0','') + str(df.iloc[i][1]).replace('.0',''),'%Y%m%d%H%M')
df.iloc[i,0] = temp.strftime('%B')
df.iloc[i,1] = temp.strftime('%I%p')
df = df.rename(columns={"Date": "Month", "Time": "Hour"})
df = df.groupby(['Month','Hour'],sort=False,as_index=False).mean().round(1)
st.title('Month vs. Hour Heatmap')
heatmap_df = heatmap(df)
st.title('Dataframe')
st.dataframe(heatmap_df)
st.markdown(download_csv('Heatmap Dataframe',pd.DataFrame(heatmap_df)),unsafe_allow_html=True)