-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExampleMagmaCode1.mgm
110 lines (89 loc) · 3.35 KB
/
ExampleMagmaCode1.mgm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Comments can be put on lines that start with //
// We run code by copying and pasting into the Online Calculator
// when we "Submit", comments will be ignored.
// These lines define P1, P2, P3 to be sets of polynomials using the appropriate field.
// Notice that inside the < > we say the name we will use for the variable.
P1<x> := PolynomialRing(IntegerRing());
P2<y> := PolynomialRing(Rationals());
P3<z> := PolynomialRing(RealField());
// We can alternately give names to the Integers, Rationals, Reals in the following way:
Z := IntegerRing();
P1<x> := PolynomialRing(Z);
Q := Rationals();
P2<y> := PolynomialRing(Q);
R := RealField();
P3<z> := PolynomialRing(R);
// If we define the same polynomial in each ring, the difference is where the coefficients live:
p1 :=3*x^2 -5*x +2;
p2 :=3*y^2 -5*y +2;
p3 :=3*z^2 -5*z +2;
// We can see the difference when we ask for a factorization.
// Notice that MAGMA does not factor over the real numbers:
print "The factorization over the integers:";
Factorization(p1);
print "The factorization over the rationals:";
Factorization(p2);
print "The factorization over the real numbers gives an error:";
Factorization(p3);
// But we CAN ask for the roots of a polynomial over the real numbers:
print "The real roots of the polynomial:";
Roots(p3);
// We can factor more complicated polynomials as well:
Factorization(x^8 -1);
// Using numbers, MAGMA will automatically decide if we have integer, rationalm or real numbers:
print 4/2;
print 4.0/2.0;
print 4/3;
print 4.0/3.0;
print 2 + (4*9) - (2/3);
print 2 + (4*9) - (2/3) - 3.0;
// We use "div" and "mod" to do integer division (quotient and remainder):
152 div 37;
152 mod 37;
print "can combine in single statement:";
152 div 37, 152 mod 37;
// Commas can separate multiple operations, we get the results in a list.
25 mod 3, 125 mod 3, 98 mod 3, 229 mod 3;
// There are lots of built in functions we can use, can use them in expressions:
Factorial(7);
3*Factorial(7) + 2*Factorial(7)^2;
// We can also rename expressions to make them easier to use:
F := Factorial;
3*F(7) + 2*F(5) - 13*F(6);
// For testing relations, we use eq, ne, lt, le, gt, ge:
// eq : equals, ne : not equals
// lt : less than, le : less than or equal
// gt : greater than, ge : greater than or equal
// MAGMA will return value of `true' or `false'
(3^2 -5) eq 4;
(3^2 - 5 eq 7) or (2^2 eq 4);
// Lots of other functions can test properties and tell us true/false:
IsPrime(101);
IsPrime(157);
IsPrime(197);
IsPrime(206);
// We can use true false to decide what commands to execute,
// for example, we can determine if a,b,c can be the side lengths of a triangle,
// if they are, compute the area, otherwise give an area:
a := 3; b := 5; c := 7;
if ((a le b+c) and (b le a+c) and (c le a+b)) then
s := (a+b+c)/2;
A := Sqrt(s*(s-a)*(s-b)*(s-c));
print "The area is ", A, " units";
else
print "These are not the sides of a triangle.";
end if;
// We can assign the above operations to a "function" that we can call:
TriangleArea := function(a, b, c)
if ((a le b+c) and (b le a+c) and (c le a+b)) then
s := (a+b+c)/2;
A := Sqrt(s*(s-a)*(s-b)*(s-c));
print "The area is ", A, " units";
else
print "These are not the sides of a triangle.";
A := false;
end if;
return A;
end function;
// Note that a function HAS to return a value,
// so if there is an error message we need to find a creative value to return.