-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_m5_point.py
318 lines (278 loc) · 11 KB
/
run_m5_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from discoverlib import geom, graph
import model_m5d as model
import model_utils
import tileloader_sea2 as tileloader
from collections import deque
import numpy
import math
import os
import os.path
from PIL import Image
import random
import scipy.ndimage
import sys
import tensorflow as tf
import time
MODEL_BASE = sys.argv[1]
tileloader.tile_dir = sys.argv[2]
tileloader.graph_dir = sys.argv[3]
tileloader.pytiles_path = sys.argv[4]
ROAD_WIDTH = 40
SEGMENT_LENGTH = 20
WINDOW_SIZE = 256
NUM_TRAIN_TILES = 1024
TILE_SIZE = 4096
ANGLE_ONEHOT = 64
PROB_FROM_ROAD = 1.0
NO_DETECT = False
ENABLE_ROTATION = True
tiles = tileloader.Tiles(SEGMENT_LENGTH)
tiles.prepare_training()
num_val = max(5, len(tiles.train_tiles) / 10 + 1)
print 'using {} of {} tiles as validation set'.format(num_val, len(tiles.train_tiles))
val_tiles = tiles.train_tiles[:num_val]
train_tiles = tiles.train_tiles[num_val:]
# initialize model and session
print 'initializing model'
m = model.Model(bn=True, angle_weight=40)
session = tf.Session()
model_path = MODEL_BASE + '/model_latest/model'
best_path = MODEL_BASE + '/model_best/model'
if os.path.isfile(model_path + '.meta'):
print '... loading existing model'
m.saver.restore(session, model_path)
else:
print '... initializing a new model'
session.run(m.init_op)
if ENABLE_ROTATION:
FETCH_FACTOR = 2
else:
FETCH_FACTOR = 1
def get_tile_rect(tile):
p = geom.Point(tile.x, tile.y)
return geom.Rectangle(
p.scale(TILE_SIZE),
p.add(geom.Point(1, 1)).scale(TILE_SIZE)
)
tile_edgeprobs = {}
def get_tile_edgeprobs(tile):
k = '{}_{}_{}'.format(tile.region, tile.x, tile.y)
if k not in tile_edgeprobs:
gc = tiles.get_gc(tile.region)
rect = get_tile_rect(tile).add_tol(-WINDOW_SIZE*FETCH_FACTOR/2)
edge_ids = []
edge_lengths = []
for edge in gc.graph.edges:
if rect.contains(edge.src.point) and rect.contains(edge.dst.point):
edge_ids.append(edge.id)
edge_lengths.append(edge.segment().length())
edge_lengths = numpy.array(edge_lengths, dtype='float32')
edge_probs = edge_lengths / edge_lengths.sum()
tile_edgeprobs[k] = (edge_ids, edge_probs)
return tile_edgeprobs[k]
def compute_targets(gc, point, edge_pos):
angle_targets = numpy.zeros((64,), 'float32')
def best_angle_to_pos(pos):
angle_points = [model_utils.get_next_point(point, angle_bucket, SEGMENT_LENGTH) for angle_bucket in xrange(64)]
distances = [angle_point.distance(pos.point()) for angle_point in angle_points]
point_angle = numpy.argmin(distances) * math.pi * 2 / 64.0 - math.pi
edge_angle = geom.Point(1, 0).signed_angle(pos.edge.segment().vector())
avg_vector = geom.vector_from_angle(point_angle, 50).add(geom.vector_from_angle(edge_angle, 50))
avg_angle = geom.Point(1, 0).signed_angle(avg_vector)
return int((avg_angle + math.pi) * 64.0 / math.pi / 2)
def set_angle_bucket_soft(target_bucket):
for offset in xrange(31):
clockwise_bucket = (target_bucket + offset) % 64
counterclockwise_bucket = (target_bucket + 64 - offset) % 64
for bucket in [clockwise_bucket, counterclockwise_bucket]:
angle_targets[bucket] = max(angle_targets[bucket], pow(0.75, offset))
def set_by_positions(positions):
for pos in positions:
best_angle_bucket = best_angle_to_pos(pos)
set_angle_bucket_soft(best_angle_bucket)
cur_edge = edge_pos.edge
cur_rs = gc.edge_to_rs[cur_edge.id]
potential_rs = []
if cur_rs.edge_distances[cur_edge.id] + edge_pos.distance + SEGMENT_LENGTH < cur_rs.length():
potential_rs.append(cur_rs)
else:
for rs in cur_rs.out_rs(gc.edge_to_rs):
if rs == cur_rs or rs.is_opposite(cur_rs):
continue
potential_rs.append(rs)
opposite_rs = gc.edge_to_rs[cur_rs.edges[-1].get_opposite_edge().id]
if cur_rs.edge_distances[cur_edge.id] + edge_pos.distance - SEGMENT_LENGTH > 0:
potential_rs.append(opposite_rs)
else:
for rs in opposite_rs.out_rs(gc.edge_to_rs):
if rs == opposite_rs or rs.is_opposite(opposite_rs):
continue
potential_rs.append(rs)
expected_positions = []
for rs in potential_rs:
pos = rs.closest_pos(point)
rs_follow_positions = graph.follow_graph(pos, SEGMENT_LENGTH)
expected_positions.extend(rs_follow_positions)
set_by_positions(expected_positions)
return angle_targets
def get_example(traintest='train'):
while True:
if traintest == 'train':
tile = random.choice(train_tiles)
elif traintest == 'test':
tile = random.choice(val_tiles)
edge_ids, edge_probs = get_tile_edgeprobs(tile)
if len(edge_ids) > 80 or len(edge_ids) > 0:
break
# determine rotation factor
rotation = None
if ENABLE_ROTATION:
rotation = random.random() * 2 * math.pi
rect = get_tile_rect(tile)
small_rect = rect.add_tol(-WINDOW_SIZE*FETCH_FACTOR/2)
# get random edge position
edge_id = numpy.random.choice(edge_ids, p=edge_probs)
gc = tiles.get_gc(tile.region)
edge = gc.graph.edges[edge_id]
distance = random.random() * edge.segment().length()
# convert to point and add noise
point = graph.EdgePos(edge, distance).point()
if random.random() < PROB_FROM_ROAD:
if random.random() < 0.2:
noise_amount = 10 * SEGMENT_LENGTH
else:
noise_amount = ROAD_WIDTH / 1.5
noise = geom.Point(random.random() * 2*noise_amount - noise_amount, random.random() * 2*noise_amount - noise_amount)
point = point.add(noise)
point = small_rect.clip(point)
else:
point = geom.Point(random.randint(0, small_rect.lengths().x - 1), random.randint(0, small_rect.lengths().y - 1))
point = point.add(small_rect.start)
point = small_rect.clip(point)
# match point to edge if possible
threshold = ROAD_WIDTH
closest_edge = None
closest_distance = None
for edge in gc.edge_index.search(point.bounds().add_tol(threshold)):
d = edge.segment().distance(point)
if d < threshold and (closest_edge is None or d < closest_distance):
closest_edge = edge
closest_distance = d
closest_pos = None
if closest_edge is not None:
closest_pos = closest_edge.closest_pos(point)
# generate input
origin = point.sub(geom.Point(WINDOW_SIZE/2, WINDOW_SIZE/2))
tile_origin = origin.sub(rect.start)
fetch_rect = geom.Rectangle(tile_origin, tile_origin.add(geom.Point(WINDOW_SIZE, WINDOW_SIZE))).add_tol(WINDOW_SIZE*(FETCH_FACTOR-1)/2)
big_ims = tiles.cache.get_window(tile.region, rect, fetch_rect)
input = big_ims['input'].astype('float32') / 255.0
if rotation:
input = scipy.ndimage.interpolation.rotate(input, rotation * 180 / math.pi, reshape=False, order=0)
input = input[WINDOW_SIZE/2:3*WINDOW_SIZE/2, WINDOW_SIZE/2:3*WINDOW_SIZE/2, :]
# compute targets
if closest_edge is not None:
angle_targets = compute_targets(gc, point, closest_pos)
if rotation:
shift = int(rotation * 32 / math.pi)
new_targets = numpy.zeros((64,), 'float32')
for i in xrange(64):
new_targets[(i + shift) % 64] = angle_targets[i]
angle_targets = new_targets
else:
angle_targets = numpy.zeros((64,), 'float32')
detect_targets = numpy.zeros((64*FETCH_FACTOR, 64*FETCH_FACTOR, 1), dtype='float32')
if not NO_DETECT:
fetch_rect = geom.Rectangle(origin, origin.add(geom.Point(WINDOW_SIZE, WINDOW_SIZE))).add_tol(WINDOW_SIZE*(FETCH_FACTOR-1)/2)
for edge in gc.edge_index.search(fetch_rect.add_tol(32)):
start = edge.src.point.sub(fetch_rect.start).scale(float(64)/WINDOW_SIZE)
end = edge.dst.point.sub(fetch_rect.start).scale(float(64)/WINDOW_SIZE)
for p in geom.draw_line(start, end, geom.Point(64*FETCH_FACTOR, 64*FETCH_FACTOR)):
detect_targets[p.x, p.y, 0] = 1
if rotation:
detect_targets = scipy.ndimage.interpolation.rotate(detect_targets, rotation * 180 / math.pi, reshape=False, order=0)
detect_targets = detect_targets[32:96, 32:96, :]
info = {
'region': tile.region,
'point': point,
'origin': origin,
'closest_pos': closest_pos,
'rotation': rotation,
}
return info, input, angle_targets, detect_targets
val_examples = [get_example('test') for _ in xrange(2048)]
def vis_example(example, outputs=None):
info, input, angle_targets, detect_targets = example
x = numpy.zeros((WINDOW_SIZE, WINDOW_SIZE, 3), dtype='uint8')
x[:, :, :] = input * 255
x[WINDOW_SIZE/2-2:WINDOW_SIZE/2+2, WINDOW_SIZE/2-2:WINDOW_SIZE/2+2, :] = 255
gc = tiles.get_gc(info['region'])
rect = geom.Rectangle(info['origin'], info['origin'].add(geom.Point(WINDOW_SIZE, WINDOW_SIZE)))
for edge in gc.edge_index.search(rect):
start = edge.src.point
end = edge.dst.point
for p in geom.draw_line(start.sub(info['origin']), end.sub(info['origin']), geom.Point(WINDOW_SIZE, WINDOW_SIZE)):
x[p.x, p.y, 0:2] = 0
x[p.x, p.y, 2] = 255
if info['closest_pos'] is not None:
p = info['closest_pos'].point().sub(info['origin'])
x[p.x-2:p.x+2, p.y-2:p.y+2, 0] = 255
x[p.x-2:p.x+2, p.y-2:p.y+2, 1:3] = 0
for i in xrange(WINDOW_SIZE):
for j in xrange(WINDOW_SIZE):
di = i - WINDOW_SIZE/2
dj = j - WINDOW_SIZE/2
d = math.sqrt(di * di + dj * dj)
a = int((math.atan2(dj, di) - math.atan2(0, 1) + math.pi) * 64 / 2 / math.pi)
if a >= 64:
a = 63
elif a < 0:
a = 0
elif d > 100 and d <= 120 and angle_targets is not None:
x[i, j, 0] = angle_targets[a] * 255
x[i, j, 1] = angle_targets[a] * 255
x[i, j, 2] = 0
elif d > 70 and d <= 90 and outputs is not None:
x[i, j, 0] = outputs[a] * 255
x[i, j, 1] = outputs[a] * 255
x[i, j, 2] = 0
return x
best_loss = None
for epoch in xrange(9999):
start_time = time.time()
train_losses = []
for _ in xrange(1024):
examples = [get_example('train') for _ in xrange(model.BATCH_SIZE)]
feed_dict = {
m.is_training: True,
m.inputs: [example[1] for example in examples],
m.angle_targets: [example[2] for example in examples],
m.detect_targets: [example[3] for example in examples],
m.learning_rate: 1e-5,
}
if ANGLE_ONEHOT:
feed_dict[m.angle_onehot] = model_utils.get_angle_onehot(ANGLE_ONEHOT)
_, angle_loss, detect_loss, loss = session.run([m.optimizer, m.angle_loss, m.detect_loss, m.loss], feed_dict=feed_dict)
train_losses.append((angle_loss, detect_loss, loss))
train_loss = numpy.mean([l[0] for l in train_losses]), numpy.mean([l[1] for l in train_losses]), numpy.mean([l[2] for l in train_losses])
train_time = time.time()
val_losses = []
for i in xrange(0, len(val_examples), model.BATCH_SIZE):
examples = val_examples[i:i+model.BATCH_SIZE]
feed_dict = {
m.is_training: False,
m.inputs: [example[1] for example in examples],
m.angle_targets: [example[2] for example in examples],
m.detect_targets: [example[3] for example in examples],
}
if ANGLE_ONEHOT:
feed_dict[m.angle_onehot] = model_utils.get_angle_onehot(ANGLE_ONEHOT)
angle_loss, detect_loss, loss = session.run([m.angle_loss, m.detect_loss, m.loss], feed_dict=feed_dict)
val_losses.append((angle_loss, detect_loss, loss))
val_loss = numpy.mean([l[0] for l in val_losses]), numpy.mean([l[1] for l in val_losses]), numpy.mean([l[2] for l in val_losses])
val_time = time.time()
print 'iteration {}: train_time={}, val_time={}, train_loss={}, val_loss={}/{}'.format(epoch, int(train_time - start_time), int(val_time - train_time), train_loss, val_loss, best_loss)
m.saver.save(session, model_path)
if best_loss is None or val_loss[0] < best_loss:
best_loss = val_loss[0]
m.saver.save(session, best_path)