We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello developers, I'm inspecting smoothquant and use the script below to check the quantized model parameter sizes:
from smoothquant.opt import Int8OPTForCausalLM from transformers.models.opt.modeling_opt import OPTForCausalLM import torch model_name = "mit-han-lab/opt-2.7b-smoothquant" model_smoothquant = Int8OPTForCausalLM.from_pretrained(model_name, device_map='auto') for name, param in model_smoothquant.named_parameters(): print(f"Parameter Name: {name}, Parameter Shape: {param.shape}")
I noticed that there are only 4 layers collected by the inner-loop.
Parameter Name: model.decoder.embed_tokens.weight, Parameter Shape: torch.Size([50272, 2560]) Parameter Name: model.decoder.embed_positions.weight, Parameter Shape: torch.Size([2050, 2560]) Parameter Name: model.decoder.final_layer_norm.weight, Parameter Shape: torch.Size([2560]) Parameter Name: model.decoder.final_layer_norm.bias, Parameter Shape: torch.Size([2560])
Could some one explain this phenomenon? Thanks!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hello developers,
I'm inspecting smoothquant and use the script below to check the quantized model parameter sizes:
I noticed that there are only 4 layers collected by the inner-loop.
Parameter Name: model.decoder.embed_tokens.weight, Parameter Shape: torch.Size([50272, 2560])
Parameter Name: model.decoder.embed_positions.weight, Parameter Shape: torch.Size([2050, 2560])
Parameter Name: model.decoder.final_layer_norm.weight, Parameter Shape: torch.Size([2560])
Parameter Name: model.decoder.final_layer_norm.bias, Parameter Shape: torch.Size([2560])
Could some one explain this phenomenon? Thanks!
The text was updated successfully, but these errors were encountered: