-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformance_measure.py
97 lines (89 loc) · 3.94 KB
/
performance_measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import config
device='cuda' if torch.cuda.is_available() else 'cpu'
def compute_recall_precison_f1(num_classes, all_labels, all_preds,verbose):
"""
Compute recall, precision and f1 score for each class and return the macro average of the same.
"""
classes_present = num_classes
total_recall = 0
for i in range(num_classes):
tp = torch.sum((all_labels == i) & (all_preds == i))
fn = torch.sum((all_labels == i) & (all_preds != i))
if tp + fn != 0:
recall = tp / (tp + fn)
else:
recall = 0
total_recall += recall
macro_recall = total_recall / classes_present
# Macro Precision
total_precision = 0
for i in range(num_classes):
tp = torch.sum((all_labels == i) & (all_preds == i))
fp = torch.sum((all_labels != i) & (all_preds == i))
if tp + fp != 0:
precision = tp / (tp + fp)
else:
precision = 0
total_precision += precision
macro_precision = total_precision / classes_present
macro_f1 = (2 * macro_precision * macro_recall) / (macro_precision + macro_recall)
if(verbose):
print("Macro recall : {:.4f}".format(macro_recall), end=', ')
print("Macro precision : {:.4f}".format(macro_precision), end=', ')
print("Macro f1 : {:.4f}".format(macro_f1))
return macro_recall, macro_precision, macro_f1
@torch.no_grad()
def calculate_metrics(eval_dataloader,seq_model,num_evaluations=1,verbose=True):
"""
Calculate the accuracy, precision, recall and f1 score for the model on the input dataloader
"""
cross_entropy_loss = torch.nn.CrossEntropyLoss()
seq_model.eval()
# Initialize the lists to store the labels and predictions for all points in the dataloader
out={'accuracy':0.0,'precision':0.0,'recall':0.0,'f1_score':0.0,'loss':0.0}
for _ in range(num_evaluations):
correct = 0
total = 0
total_loss=0
all_labels = torch.zeros(len(eval_dataloader.dataset))
all_preds = torch.zeros(len(eval_dataloader.dataset))
for i,(images, labels) in enumerate(eval_dataloader):
# Move the batch to the GPU if available
curr_index = i*config.batch_size
images = images.to(device)
seq_model.to(device)
# Forward pass and prediction
outputs = seq_model(images)
outputs = outputs.cpu().detach()
_, predicted_label = torch.max(outputs.data, 1)
labels= labels.cpu().detach()
#computing loss
total_loss+=cross_entropy_loss(outputs,labels)
# Compute accuracy
total += labels.size(0)
correct += (predicted_label == labels).sum().item()
# Store the labels and predictions for current batch
all_labels[curr_index:(curr_index+len(labels))] = labels
all_preds[curr_index:(curr_index+len(labels))] = predicted_label
#average loss
average_loss=(total_loss/len(eval_dataloader))
# Validation Accuracy
val_accuracy = 100 * correct / total
if(verbose):
print('Average loss {:.4f}'.format(average_loss),end = ' , ')
print('Accuracy: {:.2f}%'.format(val_accuracy),end = ' , ')
#macro recall
macro_recall, macro_precision,macro_f1=compute_recall_precison_f1(config.num_classes,all_labels,all_preds,verbose)
out['accuracy']+=val_accuracy
out['precision']+=macro_precision
out['recall']+=macro_recall
out['f1_score']+=macro_f1
out['loss']+=average_loss
out['accuracy']/=num_evaluations
out['precision']/=num_evaluations
out['recall']/=num_evaluations
out['f1_score']/=num_evaluations
out['loss']/=num_evaluations
seq_model.train()
return out