-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
64 lines (56 loc) · 2.57 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from performance_measure import calculate_metrics
from models import lenet,resnet,efficient_net
import config
import torch
from torchvision.transforms import v2
import torch.utils.data as data
from torchvision.datasets import ImageFolder
import os
def get_dataloader(path,data_transform):
dataset=ImageFolder(path,transform=data_transform)
dataloader=data.DataLoader(dataset,batch_size=config.batch_size)
return dataloader
def inference_test():
"""
Function to evaluate the models on the test data
"""
models=['lenet','resnet','resnet256','enet']
print('Total files in the test folder:',len(os.listdir(test_data_path)))
for model in models:
model_name=model
print('Starting Evaluation with Model - ',model_name)
out_dir=os.path.join(f'saved_models',f'{model_name}_saved_model')
data_transforms=torch.load(os.path.join(out_dir,f'transforms_{model_name}.pt'))
test_loader=get_dataloader(test_data_path,data_transforms)
if(model=='lenet'):
seq_model = lenet.LeNet(config.num_classes)
elif(model=='resnet' or model=='resnet256'):
seq_model = resnet.CustomResNet(config.num_classes).get_model()
elif(model=='efficient_net'):
enet_model = efficient_net.CustomEfficientNet(config.num_classes).get_model()
if(model=='enet'):
#having issue with loading efficient net model
#works fine during training but not during inference
seq_model.load_state_dict(torch.load(os.path.join(out_dir,f'state_{model_name}.pt'),map_location=torch.device('cpu')),strict=False)
else:
seq_model.load_state_dict(torch.load(os.path.join(out_dir,f'state_{model_name}.pt'),map_location=torch.device('cpu')))
#calcualte the metrics 5 times and take the average
out=calculate_metrics(test_loader,seq_model,3,True)
#take average of the metrics
print('-'*50)
print('Final Score for ',model_name)
print('Accuracy: {:.2f}%'.format(out['accuracy']))
print('Precision: {:.2f}'.format(out['precision']))
print('Recall: {:.2f}'.format(out['recall']))
print('F1 Score: {:.2f}'.format(out['f1_score']))
print('Loss: {:.4f}'.format(out['loss']))
print('-'*50)
print('*'*50)
print('-'*50)
if __name__ == "__main__":
#update the path to the test folder
test_data_path=''
if test_data_path=='' or not os.path.exists(test_data_path):
print('Please provide a valid path to the test folder')
exit()
inference_test()