-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultihead_attention.py
73 lines (61 loc) · 2.75 KB
/
multihead_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
device='mps' if torch.backends.mps.is_available() else 'cpu'
#device='cpu'
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super().__init__()
def forward(self,query,key,value,mask=None):
#print("Inside scaled dot product attention")
B,nh,T,hs=query.shape
key=key.transpose(-2,-1)
#print('before calc attention score')
#print('key shape',key.shape)
#print('query shape',query.shape)
attetntion_score=torch.matmul(query,key)
#shape of attention_score is B,nh,T,T
attetntion_score=attetntion_score/torch.sqrt(torch.tensor(hs))
if(mask is not None):
#print('mask',mask.shape)
#print('attetntion_score',attetntion_score.shape)
attetntion_score += (mask * -1e9)
attention_weights=torch.softmax(attetntion_score,dim=-1)
output=torch.matmul(attention_weights,value)
#shape of output is B,nh,T,hs
return output
class MultiHeadAttention(nn.Module):
def __init__(self,num_heads,embed_size,key_dim,query_dim,value_dim,mask=False):
super().__init__()
#print('inside multihead attention')
self.num_heads=num_heads
self.head_size=embed_size//num_heads
self.key_dim=key_dim
self.query_dim=query_dim
self.value_dim=value_dim
self.mask=mask
self.attention=ScaledDotProductAttention()
self.key_layer=nn.Linear(embed_size,key_dim).to(device)
self.query_layer=nn.Linear(embed_size,query_dim).to(device)
self.value_layer=nn.Linear(embed_size,value_dim).to(device)
self.final_layer=nn.Linear(value_dim,embed_size).to(device)
def forward(self,query,key,value,mask=None):
#print('input shape',query.shape)
B,T,C=query.shape
query=self.query_layer(query)
key=self.key_layer(key)
value=self.value_layer(value)
#print('query shape after dense layer',query.shape)
#print('key shape after dense layer',key.shape)
#print('value shape after dense layer',value.shape)
query=query.view(B,T,self.num_heads,-1).transpose(1,2)
#print('query shape after reshape',query.shape)
key=key.view(B,T,self.num_heads,-1).transpose(1,2)
value=value.view(B,T,self.num_heads,-1).transpose(1,2)
scaled_attention=self.attention(query,key,value,mask)
#shape of scaled_attention is B,nh,T,hs
scaled_attention=scaled_attention.transpose(1,2).contiguous().view(B,T,-1)
#shape of scaled_attention is B,T,nh*hs
output=self.final_layer(scaled_attention)
#print('output shape',output.shape)
#shape of output is B,T,C
return output