-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathtrain.py
156 lines (126 loc) · 6.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import time
import os
import argparse
from read_ImageNetData import ImageNetData
import se_resnet
import se_resnext
def train_model(args, model, criterion, optimizer, scheduler, num_epochs, dataset_sizes):
since = time.time()
resumed = False
best_model_wts = model.state_dict()
for epoch in range(args.start_epoch+1,num_epochs):
# Each epoch has a training and validation phase
for phase in ['train','val']:
if phase == 'train':
if args.start_epoch > 0 and (not resumed):
scheduler.step(args.start_epoch+1)
resumed = True
else:
scheduler.step(epoch)
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
tic_batch = time.time()
# Iterate over data.
for i, (inputs, labels) in enumerate(dataloders[phase]):
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.data[0]
running_corrects += torch.sum(preds == labels.data)
batch_loss = running_loss / ((i+1)*args.batch_size)
batch_acc = running_corrects / ((i+1)*args.batch_size)
if phase == 'train' and i%args.print_freq == 0:
print('[Epoch {}/{}]-[batch:{}/{}] lr:{:.4f} {} Loss: {:.6f} Acc: {:.4f} Time: {:.4f}batch/sec'.format(
epoch, num_epochs - 1, i, round(dataset_sizes[phase]/args.batch_size)-1, scheduler.get_lr()[0], phase, batch_loss, batch_acc, \
args.print_freq/(time.time()-tic_batch)))
tic_batch = time.time()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if (epoch+1) % args.save_epoch_freq == 0:
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
torch.save(model, os.path.join(args.save_path, "epoch_" + str(epoch) + ".pth.tar"))
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# load best model weights
model.load_state_dict(best_model_wts)
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="PyTorch implementation of SENet")
parser.add_argument('--data-dir', type=str, default="/ImageNet")
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--num-class', type=int, default=1000)
parser.add_argument('--num-epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.045)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--gpus', type=str, default=0)
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--save-epoch-freq', type=int, default=1)
parser.add_argument('--save-path', type=str, default="output")
parser.add_argument('--resume', type=str, default="", help="For training from one checkpoint")
parser.add_argument('--start-epoch', type=int, default=0, help="Corresponding to the epoch of resume ")
parser.add_argument('--network', type=str, default="se_resnet_50", help="")
args = parser.parse_args()
# read data
dataloders, dataset_sizes = ImageNetData(args)
# use gpu or not
use_gpu = torch.cuda.is_available()
print("use_gpu:{}".format(use_gpu))
# get model
script_name = '_'.join([args.network.strip().split('_')[0], args.network.strip().split('_')[1]])
if script_name == "se_resnet":
model = getattr(se_resnet ,args.network)(num_classes = args.num_class)
elif script_name == "se_resnext":
model = getattr(se_resnext, args.network)(num_classes=args.num_class)
else:
raise Exception("Please give correct network name such as se_resnet_xx or se_rexnext_xx")
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
base_dict = {'.'.join(k.split('.')[1:]): v for k, v in list(checkpoint.state_dict().items())}
model.load_state_dict(base_dict)
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
if use_gpu:
model = model.cuda()
model = torch.nn.DataParallel(model, device_ids=[int(i) for i in args.gpus.strip().split(',')])
# define loss function
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.00004)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=1, gamma=0.98)
model = train_model(args=args,
model=model,
criterion=criterion,
optimizer=optimizer_ft,
scheduler=exp_lr_scheduler,
num_epochs=args.num_epochs,
dataset_sizes=dataset_sizes)