-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathckpt_transform.py
58 lines (47 loc) · 1.83 KB
/
ckpt_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import os
import sys
import torch
import mindspore as ms
from examples.clip.clip.clip import _MODELS, _download
def parse_args(args):
parser = argparse.ArgumentParser()
parser.add_argument(
"--pth_path",
type=str,
default=None,
help="Model name or the path of the model's checkpoint file given by OpenAI",
)
args = parser.parse_args(args)
return args
def pytorch_params(pth_file):
par_dict = torch.load(pth_file, map_location="cpu").state_dict()
pt_params = []
for name in par_dict:
parameter = par_dict[name]
if "ln_" in name:
name = name.replace(".weight", ".gamma").replace(".bias", ".beta")
elif name == "token_embedding.weight":
name = "token_embedding.embedding_table"
elif ".bn" in name or ".downsample.1." in name:
name = name.replace(".weight", ".gamma").replace(".bias", ".beta")
name = name.replace(".running_mean", ".moving_mean").replace(".running_var", ".moving_variance")
pt_params.append({"name": name, "data": ms.Tensor(parameter.numpy())})
return pt_params
def main(args):
args = parse_args(args)
if os.path.exists(args.pth_path):
pt_param = pytorch_params(args.pth_path)
ms.save_checkpoint(pt_param, args.pth_path.replace(".pt", ".ckpt"))
elif args.pth_path in _MODELS.keys():
model_path = _download(_MODELS[args.pth_path], os.path.expanduser("~/"))
pt_param = pytorch_params(model_path)
ms.save_checkpoint(pt_param, os.path.expanduser("~/"))
else:
raise ValueError(
f"{args.pth_path} is not a supported checkpoint file or model name. "
f"Models with available checkpoint file are: {list(_MODELS.keys())}"
)
print("Done!")
if __name__ == "__main__":
main(sys.argv[1:])