diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index da4ddeb011..3e9baefe04 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/latest/_modules/doctr/transforms/modules/base.html b/latest/_modules/doctr/transforms/modules/base.html index 48cbf2a8fd..51dd961de0 100644 --- a/latest/_modules/doctr/transforms/modules/base.html +++ b/latest/_modules/doctr/transforms/modules/base.html @@ -425,11 +425,11 @@

Source code for doctr.transforms.modules.base

def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms - def __call__(self, img: Any) -> Any: + def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply - return transfo(img)
+ return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg] @@ -552,10 +552,12 @@

Source code for doctr.transforms.modules.base

if target.shape[1:] == (4, 2): min_xy = np.min(target, axis=1) max_xy = np.max(target, axis=1) - target = np.concatenate((min_xy, max_xy), axis=1) + _target = np.concatenate((min_xy, max_xy), axis=1) + else: + _target = target # Crop image and targets - croped_img, crop_boxes = F.crop_detection(img, target, crop_box) + croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) # hard fallback if no box is kept if crop_boxes.shape[0] == 0: return img, target diff --git a/v0.1.0/_modules/doctr/transforms/modules/base.html b/v0.1.0/_modules/doctr/transforms/modules/base.html index 48cbf2a8fd..51dd961de0 100644 --- a/v0.1.0/_modules/doctr/transforms/modules/base.html +++ b/v0.1.0/_modules/doctr/transforms/modules/base.html @@ -425,11 +425,11 @@

Source code for doctr.transforms.modules.base

def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms - def __call__(self, img: Any) -> Any: + def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply - return transfo(img)
+ return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg]
@@ -552,10 +552,12 @@

Source code for doctr.transforms.modules.base

if target.shape[1:] == (4, 2): min_xy = np.min(target, axis=1) max_xy = np.max(target, axis=1) - target = np.concatenate((min_xy, max_xy), axis=1) + _target = np.concatenate((min_xy, max_xy), axis=1) + else: + _target = target # Crop image and targets - croped_img, crop_boxes = F.crop_detection(img, target, crop_box) + croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) # hard fallback if no box is kept if crop_boxes.shape[0] == 0: return img, target diff --git a/v0.1.1/_modules/doctr/transforms/modules/base.html b/v0.1.1/_modules/doctr/transforms/modules/base.html index 48cbf2a8fd..51dd961de0 100644 --- a/v0.1.1/_modules/doctr/transforms/modules/base.html +++ b/v0.1.1/_modules/doctr/transforms/modules/base.html @@ -425,11 +425,11 @@

Source code for doctr.transforms.modules.base

def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms - def __call__(self, img: Any) -> Any: + def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply - return transfo(img)
+ return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg]
@@ -552,10 +552,12 @@

Source code for doctr.transforms.modules.base

if target.shape[1:] == (4, 2): min_xy = np.min(target, axis=1) max_xy = np.max(target, axis=1) - target = np.concatenate((min_xy, max_xy), axis=1) + _target = np.concatenate((min_xy, max_xy), axis=1) + else: + _target = target # Crop image and targets - croped_img, crop_boxes = F.crop_detection(img, target, crop_box) + croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) # hard fallback if no box is kept if crop_boxes.shape[0] == 0: return img, target diff --git a/v0.2.0/_modules/doctr/transforms/modules/base.html b/v0.2.0/_modules/doctr/transforms/modules/base.html index 48cbf2a8fd..51dd961de0 100644 --- a/v0.2.0/_modules/doctr/transforms/modules/base.html +++ b/v0.2.0/_modules/doctr/transforms/modules/base.html @@ -425,11 +425,11 @@

Source code for doctr.transforms.modules.base

def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms - def __call__(self, img: Any) -> Any: + def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply - return transfo(img)
+ return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg]
@@ -552,10 +552,12 @@

Source code for doctr.transforms.modules.base

if target.shape[1:] == (4, 2): min_xy = np.min(target, axis=1) max_xy = np.max(target, axis=1) - target = np.concatenate((min_xy, max_xy), axis=1) + _target = np.concatenate((min_xy, max_xy), axis=1) + else: + _target = target # Crop image and targets - croped_img, crop_boxes = F.crop_detection(img, target, crop_box) + croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) # hard fallback if no box is kept if crop_boxes.shape[0] == 0: return img, target diff --git a/v0.2.1/_modules/doctr/transforms/modules/base.html b/v0.2.1/_modules/doctr/transforms/modules/base.html index 48cbf2a8fd..51dd961de0 100644 --- a/v0.2.1/_modules/doctr/transforms/modules/base.html +++ b/v0.2.1/_modules/doctr/transforms/modules/base.html @@ -425,11 +425,11 @@

Source code for doctr.transforms.modules.base

def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: self.transforms = transforms - def __call__(self, img: Any) -> Any: + def __call__(self, img: Any, target: Optional[np.ndarray] = None) -> Union[Any, Tuple[Any, np.ndarray]]: # Pick transformation transfo = self.transforms[int(random.random() * len(self.transforms))] # Apply - return transfo(img)
+ return transfo(img) if target is None else transfo(img, target) # type: ignore[call-arg]
@@ -552,10 +552,12 @@

Source code for doctr.transforms.modules.base

if target.shape[1:] == (4, 2): min_xy = np.min(target, axis=1) max_xy = np.max(target, axis=1) - target = np.concatenate((min_xy, max_xy), axis=1) + _target = np.concatenate((min_xy, max_xy), axis=1) + else: + _target = target # Crop image and targets - croped_img, crop_boxes = F.crop_detection(img, target, crop_box) + croped_img, crop_boxes = F.crop_detection(img, _target, crop_box) # hard fallback if no box is kept if crop_boxes.shape[0] == 0: return img, target