From 99842ba33d22d4696680abdf259f0e292d37ea8c Mon Sep 17 00:00:00 2001 From: Olivier Dulcy <106678676+odulcy-mindee@users.noreply.github.com> Date: Mon, 18 Nov 2024 14:53:01 +0100 Subject: [PATCH] bump: :arrow_up: CUDA Version (#1769) --- .github/workflows/public_docker_images.yml | 15 ++++++---- Dockerfile | 33 ++-------------------- README.md | 24 ++++++++-------- pyproject.toml | 6 ++-- 4 files changed, 27 insertions(+), 51 deletions(-) diff --git a/.github/workflows/public_docker_images.yml b/.github/workflows/public_docker_images.yml index 8d4e929391..66a7322886 100644 --- a/.github/workflows/public_docker_images.yml +++ b/.github/workflows/public_docker_images.yml @@ -24,7 +24,6 @@ jobs: # Must match version at https://www.python.org/ftp/python/ python: ["3.10.13", "3.11.8", "3.12.7"] framework: ["tf", "torch", "tf,viz,html,contrib", "torch,viz,html,contrib"] - system: ["cpu", "gpu"] # Sets the permissions granted to the `GITHUB_TOKEN` for the actions in this job. permissions: @@ -42,6 +41,12 @@ jobs: username: ${{ github.actor }} password: ${{ secrets.GITHUB_TOKEN }} + - name: Sanitize docker tag + run: + PREFIX_DOCKER_TAG="${{ matrix.framework }}-py${{ matrix.python }}-" + PREFIX_DOCKER_TAG=$(echo PREFIX_DOCKER_TAG|sed 's/,/-/g') + echo PREFIX_DOCKER_TAG=${PREFIX_DOCKER_TAG} >> $GITHUB_ENV + - name: Extract metadata (tags, labels) for Docker id: meta uses: docker/metadata-action@9ec57ed1fcdbf14dcef7dfbe97b2010124a938b7 @@ -49,9 +54,9 @@ jobs: images: ${{ env.REGISTRY }}/${{ github.repository }} tags: | # used only on schedule event - type=schedule,pattern={{date 'YYYY-MM'}},prefix=${{ matrix.framework }}-py${{ matrix.python }}-${{ matrix.system }}- + type=schedule,pattern={{date 'YYYY-MM'}},prefix=${{ env.PREFIX_DOCKER_TAG }} # used only if a tag following semver is published - type=semver,pattern={{raw}},prefix=${{ matrix.framework }}-py${{ matrix.python }}-${{ matrix.system }}- + type=semver,pattern={{raw}},prefix=${{ env.PREFIX_DOCKER_TAG }} - name: Build Docker image id: build @@ -61,7 +66,6 @@ jobs: build-args: | FRAMEWORK=${{ matrix.framework }} PYTHON_VERSION=${{ matrix.python }} - SYSTEM=${{ matrix.system }} DOCTR_REPO=${{ github.repository }} DOCTR_VERSION=${{ github.sha }} push: false # push only if `import doctr` works @@ -72,14 +76,13 @@ jobs: - name: Push Docker image # Push only if the CI is not triggered by "PR on main" - if: github.ref == 'refs/heads/main' && github.event_name != 'pull_request' + if: ${{ (github.ref == 'refs/heads/main' && github.event_name != 'pull_request') || (startsWith(github.ref, 'refs/tags') && github.event_name == 'push') }} uses: docker/build-push-action@f2a1d5e99d037542a71f64918e516c093c6f3fc4 with: context: . build-args: | FRAMEWORK=${{ matrix.framework }} PYTHON_VERSION=${{ matrix.python }} - SYSTEM=${{ matrix.system }} DOCTR_REPO=${{ github.repository }} DOCTR_VERSION=${{ github.sha }} push: true diff --git a/Dockerfile b/Dockerfile index beb8c8693e..fd89c849f8 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,38 +1,10 @@ -FROM ubuntu:22.04 +FROM nvidia/cuda:12.2.0-base-ubuntu22.04 ENV DEBIAN_FRONTEND=noninteractive ENV LANG=C.UTF-8 ENV PYTHONUNBUFFERED=1 ENV PYTHONDONTWRITEBYTECODE=1 -ARG SYSTEM=gpu - -# Enroll NVIDIA GPG public key and install CUDA -RUN if [ "$SYSTEM" = "gpu" ]; then \ - apt-get update && \ - apt-get install -y gnupg ca-certificates wget && \ - # - Install Nvidia repo keys - # - See: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#network-repo-installation-for-ubuntu - wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \ - dpkg -i cuda-keyring_1.1-1_all.deb && \ - apt-get update && apt-get install -y --no-install-recommends \ - cuda-command-line-tools-11-8 \ - cuda-cudart-dev-11-8 \ - cuda-nvcc-11-8 \ - cuda-cupti-11-8 \ - cuda-nvprune-11-8 \ - cuda-libraries-11-8 \ - cuda-nvrtc-11-8 \ - libcufft-11-8 \ - libcurand-11-8 \ - libcusolver-11-8 \ - libcusparse-11-8 \ - libcublas-11-8 \ - # - CuDNN: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#ubuntu-network-installation - libcudnn8=8.6.0.163-1+cuda11.8 \ - libnvinfer-plugin8=8.6.1.6-1+cuda11.8 \ - libnvinfer8=8.6.1.6-1+cuda11.8; \ -fi RUN apt-get update && apt-get install -y --no-install-recommends \ # - Other packages @@ -48,8 +20,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \ # - Packages for docTR libgl1-mesa-dev libsm6 libxext6 libxrender-dev libpangocairo-1.0-0 \ && apt-get clean \ - && rm -rf /var/lib/apt/lists/* \ -fi + && rm -rf /var/lib/apt/lists/* # Install Python ARG PYTHON_VERSION=3.10.13 diff --git a/README.md b/README.md index 7231a64c3a..3cf997b7bd 100644 --- a/README.md +++ b/README.md @@ -254,37 +254,37 @@ Check out our [TensorFlow.js demo](https://github.com/mindee/doctr-tfjs-demo) to ### Docker container -[We offer Docker container support for easy testing and deployment](https://github.com/mindee/doctr/pkgs/container/doctr). +We offer Docker container support for easy testing and deployment. [Here are the available docker tags.](https://github.com/mindee/doctr/pkgs/container/doctr). #### Using GPU with docTR Docker Images -The docTR Docker images are GPU-ready and based on CUDA `11.8`. -However, to use GPU support with these Docker images, please ensure that Docker is configured to use your GPU. +The docTR Docker images are GPU-ready and based on CUDA `12.2`. Make sure your host is **at least `12.2`**, otherwise Torch or TensorFlow won't be able to initialize the GPU. +Please ensure that Docker is configured to use your GPU. To verify and configure GPU support for Docker, please follow the instructions provided in the [NVIDIA Container Toolkit Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). Once Docker is configured to use GPUs, you can run docTR Docker containers with GPU support: ```shell -docker run -it --gpus all ghcr.io/mindee/doctr:tf-py3.8.18-gpu-2023-09 bash +docker run -it --gpus all ghcr.io/mindee/doctr:torch-py3.9.18-2024-10 bash ``` #### Available Tags -The Docker images for docTR follow a specific tag nomenclature: `-py--`. Here's a breakdown of the tag structure: +The Docker images for docTR follow a specific tag nomenclature: `-py-`. Here's a breakdown of the tag structure: -- ``: `tf` (TensorFlow) or `torch` (PyTorch). -- ``: `3.8.18`, `3.9.18`, or `3.10.13`. -- ``: `cpu` or `gpu` -- ``: a tag >= `v0.7.1` -- ``: e.g. `2023-09` +- ``: `tf`, `torch`, `tf-viz-html-contrib` or `torch-viz-html-contrib`. +- ``: `3.9.18`, `3.10.13` or `3.11.8`. +- ``: a tag >= `v0.11.0` +- ``: e.g. `2014-10` Here are examples of different image tags: | Tag | Description | |----------------------------|---------------------------------------------------| -| `tf-py3.8.18-cpu-v0.7.1` | TensorFlow version `3.8.18` with docTR `v0.7.1`. | -| `torch-py3.9.18-gpu-2023-09`| PyTorch version `3.9.18` with GPU support and a monthly build from `2023-09`. | +| `tf-py3.10.13-v0.11.0` | TensorFlow version `3.10.13` with docTR `v0.11.0`. | +| `torch-viz-html-contrib-py3.11.8-2024-10` | Torch with extra dependencies version `3.11.8` from latest commit on `main` in `2024-10`. | +| `torch-py3.11.8-2024-10`| PyTorch version `3.11.8` from latest commit on `main` in `2024-10`. | #### Building Docker Images Locally diff --git a/pyproject.toml b/pyproject.toml index db09c839f3..5d35e2fd73 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -53,7 +53,8 @@ dependencies = [ [project.optional-dependencies] tf = [ # cf. https://github.com/mindee/doctr/pull/1461 - "tensorflow>=2.15.0,<3.0.0", + "tensorflow[and-cuda]>=2.15.0,<3.0.0; sys_platform != 'darwin'", + "tensorflow>=2.15.0,<3.0.0; sys_platform == 'darwin'", # TensorFlow compatible for macOS "tf-keras>=2.15.0,<3.0.0", # Keep keras 2 compatibility "tf2onnx>=1.16.0,<2.0.0", # cf. https://github.com/onnx/tensorflow-onnx/releases/tag/v1.16.0 ] @@ -97,7 +98,8 @@ docs = [ dev = [ # Tensorflow # cf. https://github.com/mindee/doctr/pull/1461 - "tensorflow>=2.15.0,<3.0.0", + "tensorflow[and-cuda]>=2.15.0,<3.0.0; sys_platform != 'darwin'", + "tensorflow>=2.15.0,<3.0.0; sys_platform == 'darwin'", # TensorFlow compatible for macOS "tf-keras>=2.15.0,<3.0.0", # Keep keras 2 compatibility "tf2onnx>=1.16.0,<2.0.0", # cf. https://github.com/onnx/tensorflow-onnx/releases/tag/v1.16.0 # PyTorch