-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_poisson2d.tex
92 lines (78 loc) · 2.32 KB
/
random_poisson2d.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
\documentclass{article}
\usepackage{amssymb}
\usepackage{amsmath}
% expectation
\newcommand{\cE}[1]{\mathbb{E}[#1]}
% parametric objective function
\newcommand{\pobj}{J}
\begin{document}
We define the real-valued function $\pobj$ by
\begin{align*}
\pobj(y) =
(1/2)(y-y_d)^T N (y-y_d).
\end{align*}
The solution operator $y(u,\xi)$
is defined as the solution to
the state equation
\begin{align*}
\kappa(\xi) A y(u,\xi) = Gu + g(\xi),
\end{align*}
where
$\kappa : \Xi \to (0,\infty)$ is a real-valued random variable
such that $1/\kappa(\xi)$ has finite moments of all orders,
and $g(\xi)$ is a random vector with finite moments
of all orders.
Moreover, $G$, $N$, and $A$ are deterministic matrices, and
$N$ and $A$ are symmetric and positive semidefinite.
Using the adjoint approach, we find that
the derivative of $u \mapsto \pobj(y(u,\xi))$
with respect to $u$ is given by
$-G^Tz(u,\xi)$, where $z(u,\xi)$ solves
the adjoint equation
\begin{align*}
\kappa(\xi) A z(u,\xi) = - (Ny(u,\xi)-\widetilde{y}_d).
\end{align*}
Here $\widetilde{y}_d = Ny_d$.
We formally show that $\cE{z(u,\xi)} = \bar{z}$,
where $\bar{z}$ solves
\begin{align*}
A \bar{z} &
= - (\widetilde{N}\bar{y} - \cE{1/\kappa(\xi)}\widetilde{y}_d)
\quad
\text{where}
\quad
\widetilde{N} = \cE{1/\kappa(\xi)^2} N.
\end{align*}
and $\bar{y}$ solves
\begin{align*}
A \bar{y}
&= G u + \widetilde{g}
\quad \text{where}
\quad \widetilde{g}
= \cE{1/\kappa(\xi)^2}^{-1} \cE{g(\xi)/\kappa(\xi)^2}.
\end{align*}
Dividing the state and adjoint equation by $\kappa(\xi)$, we find that
\begin{align*}
A z(u,\xi)
& = (1/\kappa(\xi)) \widetilde{y}_d - Ny(u,\xi) \\
& = (1/\kappa(\xi)) \widetilde{y}_d
- N A^{-1}\Big[(g(\xi)/\kappa(\xi)^2)+
(1/\kappa(\xi)^2)G u\Big].
\end{align*}
Taking expectations, we obtain
\begin{align*}
A \cE{z(u,\xi)}
& =\cE{1/\kappa(\xi)} \widetilde{y}_d
- N A^{-1}\Big[\cE{g(\xi)/\kappa(\xi)^2}+
\cE{1/\kappa(\xi)^2}Gu\Big] \\
& =\cE{1/\kappa(\xi)} \widetilde{y}_d
- \underbrace{\cE{1/\kappa(\xi)^2} N}_{=\widetilde{N}}
A^{-1} \Big[
\underbrace{\cE{1/\kappa(\xi)^2}^{-1}
\cE{g(\xi)/\kappa(\xi)^2}}_{=\widetilde{g}}+
Gu\Big] \\
& = - (\widetilde{N}\bar{y} - \cE{1/\kappa(\xi)}\widetilde{y}_d)
\\
& = A \bar{z}.
\end{align*}
\end{document}