-
Notifications
You must be signed in to change notification settings - Fork 487
/
Copy pathDallasTemperature.cpp
809 lines (662 loc) · 22.7 KB
/
DallasTemperature.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
#include "DallasTemperature.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
extern "C" {
#include "WConstants.h"
}
#endif
// OneWire commands
#define STARTCONVO 0x44 // Tells device to take a temperature reading
#define COPYSCRATCH 0x48 // Copy scratchpad to EEPROM
#define READSCRATCH 0xBE // Read from scratchpad
#define WRITESCRATCH 0x4E // Write to scratchpad
#define RECALLSCRATCH 0xB8 // Recall from EEPROM to scratchpad
#define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power
#define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition
// Scratchpad locations
#define TEMP_LSB 0
#define TEMP_MSB 1
#define HIGH_ALARM_TEMP 2
#define LOW_ALARM_TEMP 3
#define CONFIGURATION 4
#define INTERNAL_BYTE 5
#define COUNT_REMAIN 6
#define COUNT_PER_C 7
#define SCRATCHPAD_CRC 8
// Device resolution
#define TEMP_9_BIT 0x1F
#define TEMP_10_BIT 0x3F
#define TEMP_11_BIT 0x5F
#define TEMP_12_BIT 0x7F
#define NO_ALARM_HANDLER ((AlarmHandler *)0)
// DSROM FIELDS
#define DSROM_FAMILY 0
#define DSROM_CRC 7
DallasTemperature::DallasTemperature() {
_wire = nullptr;
devices = 0;
ds18Count = 0;
parasite = false;
bitResolution = 9;
waitForConversion = true;
checkForConversion = true;
autoSaveScratchPad = true;
useExternalPullup = false;
#if REQUIRESALARMS
setAlarmHandler(NO_ALARM_HANDLER);
alarmSearchJunction = -1;
alarmSearchExhausted = 0;
#endif
}
DallasTemperature::DallasTemperature(OneWire* _oneWire) : DallasTemperature() {
setOneWire(_oneWire);
}
DallasTemperature::DallasTemperature(OneWire* _oneWire, uint8_t _pullupPin) : DallasTemperature(_oneWire) {
setPullupPin(_pullupPin);
}
void DallasTemperature::setOneWire(OneWire* _oneWire) {
_wire = _oneWire;
devices = 0;
ds18Count = 0;
parasite = false;
bitResolution = 9;
waitForConversion = true;
checkForConversion = true;
autoSaveScratchPad = true;
}
void DallasTemperature::setPullupPin(uint8_t _pullupPin) {
useExternalPullup = true;
pullupPin = _pullupPin;
pinMode(pullupPin, OUTPUT);
deactivateExternalPullup();
}
void DallasTemperature::begin(void) {
DeviceAddress deviceAddress;
for (uint8_t retry = 0; retry < MAX_INITIALIZATION_RETRIES; retry++) {
_wire->reset_search();
devices = 0;
ds18Count = 0;
delay(INITIALIZATION_DELAY_MS);
while (_wire->search(deviceAddress)) {
if (validAddress(deviceAddress)) {
devices++;
if (validFamily(deviceAddress)) {
ds18Count++;
if (!parasite && readPowerSupply(deviceAddress)) {
parasite = true;
}
uint8_t b = getResolution(deviceAddress);
if (b > bitResolution) {
bitResolution = b;
}
}
}
}
if (devices > 0) break;
}
}
void DallasTemperature::activateExternalPullup() {
if (useExternalPullup) digitalWrite(pullupPin, LOW);
}
void DallasTemperature::deactivateExternalPullup() {
if (useExternalPullup) digitalWrite(pullupPin, HIGH);
}
bool DallasTemperature::validFamily(const uint8_t* deviceAddress) {
switch (deviceAddress[0]) {
case DS18S20MODEL:
case DS18B20MODEL:
case DS1822MODEL:
case DS1825MODEL:
case DS28EA00MODEL:
return true;
default:
return false;
}
}
bool DallasTemperature::validAddress(const uint8_t* deviceAddress) {
return (_wire->crc8(const_cast<uint8_t*>(deviceAddress), 7) == deviceAddress[7]);
}
bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) {
if (index < devices) {
uint8_t depth = 0;
_wire->reset_search();
while (depth <= index && _wire->search(deviceAddress)) {
if (depth == index && validAddress(deviceAddress)) {
return true;
}
depth++;
}
}
return false;
}
uint8_t DallasTemperature::getDeviceCount(void) {
return devices;
}
uint8_t DallasTemperature::getDS18Count(void) {
return ds18Count;
}
bool DallasTemperature::isConnected(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
return isConnected(deviceAddress, scratchPad);
}
bool DallasTemperature::isConnected(const uint8_t* deviceAddress, uint8_t* scratchPad) {
bool b = readScratchPad(deviceAddress, scratchPad);
return b && !isAllZeros(scratchPad) && (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]);
}
bool DallasTemperature::readPowerSupply(const uint8_t* deviceAddress) {
bool parasiteMode = false;
_wire->reset();
if (deviceAddress == nullptr) {
_wire->skip();
} else {
_wire->select(deviceAddress);
}
_wire->write(READPOWERSUPPLY);
if (_wire->read_bit() == 0) {
parasiteMode = true;
}
_wire->reset();
return parasiteMode;
}
bool DallasTemperature::isParasitePowerMode(void) {
return parasite;
}
bool DallasTemperature::isAllZeros(const uint8_t* const scratchPad, const size_t length) {
for (size_t i = 0; i < length; i++) {
if (scratchPad[i] != 0) return false;
}
return true;
}
bool DallasTemperature::readScratchPad(const uint8_t* deviceAddress, uint8_t* scratchPad) {
int b = _wire->reset();
if (b == 0) return false;
_wire->select(deviceAddress);
_wire->write(READSCRATCH);
for (uint8_t i = 0; i < 9; i++) {
scratchPad[i] = _wire->read();
}
b = _wire->reset();
return (b == 1);
}
void DallasTemperature::writeScratchPad(const uint8_t* deviceAddress, const uint8_t* scratchPad) {
_wire->reset();
_wire->select(deviceAddress);
_wire->write(WRITESCRATCH);
_wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp
_wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp
// DS1820 and DS18S20 have no configuration register
if (deviceAddress[0] != DS18S20MODEL) {
_wire->write(scratchPad[CONFIGURATION]);
}
if (autoSaveScratchPad) {
saveScratchPad(deviceAddress);
} else {
_wire->reset();
}
}
bool DallasTemperature::saveScratchPad(const uint8_t* deviceAddress) {
if (_wire->reset() == 0) return false;
if (deviceAddress == nullptr)
_wire->skip();
else
_wire->select(deviceAddress);
_wire->write(COPYSCRATCH, parasite);
// Specification: NV Write Cycle Time is typically 2ms, max 10ms
// Waiting 20ms to allow for sensors that take longer in practice
if (!parasite) {
delay(20);
} else {
activateExternalPullup();
delay(20);
deactivateExternalPullup();
}
return (_wire->reset() == 1);
}
bool DallasTemperature::recallScratchPad(const uint8_t* deviceAddress) {
if (_wire->reset() == 0) return false;
if (deviceAddress == nullptr)
_wire->skip();
else
_wire->select(deviceAddress);
_wire->write(RECALLSCRATCH, parasite);
// Specification: Strong pullup only needed when writing to EEPROM
unsigned long start = millis();
while (_wire->read_bit() == 0) {
if (millis() - start > 20) return false;
yield();
}
return (_wire->reset() == 1);
}
int32_t DallasTemperature::getTemp(const uint8_t* deviceAddress, byte retryCount) {
ScratchPad scratchPad;
byte retries = 0;
while (retries++ <= retryCount) {
if (isConnected(deviceAddress, scratchPad)) {
return calculateTemperature(deviceAddress, scratchPad);
}
}
return DEVICE_DISCONNECTED_RAW;
}
float DallasTemperature::getTempC(const uint8_t* deviceAddress, byte retryCount) {
return rawToCelsius(getTemp(deviceAddress, retryCount));
}
float DallasTemperature::getTempF(const uint8_t* deviceAddress) {
return rawToFahrenheit(getTemp(deviceAddress));
}
float DallasTemperature::getTempCByIndex(uint8_t index) {
DeviceAddress deviceAddress;
if (!getAddress(deviceAddress, index)) {
return DEVICE_DISCONNECTED_C;
}
return getTempC((uint8_t*)deviceAddress);
}
float DallasTemperature::getTempFByIndex(uint8_t index) {
DeviceAddress deviceAddress;
if (!getAddress(deviceAddress, index)) {
return DEVICE_DISCONNECTED_F;
}
return getTempF((uint8_t*)deviceAddress);
}
void DallasTemperature::setResolution(uint8_t newResolution) {
bitResolution = constrain(newResolution, 9, 12);
DeviceAddress deviceAddress;
_wire->reset_search();
for (uint8_t i = 0; i < devices; i++) {
if (_wire->search(deviceAddress) && validAddress(deviceAddress)) {
setResolution(deviceAddress, bitResolution, true);
}
}
}
bool DallasTemperature::setResolution(const uint8_t* deviceAddress, uint8_t newResolution, bool skipGlobalBitResolutionCalculation) {
bool success = false;
if (deviceAddress[0] == DS18S20MODEL) {
success = true;
} else {
newResolution = constrain(newResolution, 9, 12);
uint8_t newValue = 0;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
switch (newResolution) {
case 12: newValue = TEMP_12_BIT; break;
case 11: newValue = TEMP_11_BIT; break;
case 10: newValue = TEMP_10_BIT; break;
case 9:
default: newValue = TEMP_9_BIT; break;
}
if (scratchPad[CONFIGURATION] != newValue) {
scratchPad[CONFIGURATION] = newValue;
writeScratchPad(deviceAddress, scratchPad);
}
success = true;
}
}
if (!skipGlobalBitResolutionCalculation && success) {
bitResolution = newResolution;
if (devices > 1) {
DeviceAddress deviceAddr;
_wire->reset_search();
for (uint8_t i = 0; i < devices; i++) {
if (bitResolution == 12) break;
if (_wire->search(deviceAddr) && validAddress(deviceAddr)) {
uint8_t b = getResolution(deviceAddr);
if (b > bitResolution) bitResolution = b;
}
}
}
}
return success;
}
uint8_t DallasTemperature::getResolution() {
return bitResolution;
}
uint8_t DallasTemperature::getResolution(const uint8_t* deviceAddress) {
if (deviceAddress[0] == DS18S20MODEL) return 12;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
if (deviceAddress[0] == DS1825MODEL && scratchPad[CONFIGURATION] & 0x80) {
return 12;
}
switch (scratchPad[CONFIGURATION]) {
case TEMP_12_BIT: return 12;
case TEMP_11_BIT: return 11;
case TEMP_10_BIT: return 10;
case TEMP_9_BIT: return 9;
}
}
return 0;
}
float DallasTemperature::toFahrenheit(float celsius) {
return (celsius * 1.8f) + 32.0f;
}
float DallasTemperature::toCelsius(float fahrenheit) {
return (fahrenheit - 32.0f) * 0.555555556f;
}
float DallasTemperature::rawToCelsius(int32_t raw) {
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_C;
return (float)raw * 0.0078125f; // 1/128
}
float DallasTemperature::rawToFahrenheit(int32_t raw) {
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_F;
return rawToCelsius(raw) * 1.8f + 32.0f;
}
int16_t DallasTemperature::celsiusToRaw(float celsius) {
return static_cast<int16_t>(celsius * 128.0f);
}
uint16_t DallasTemperature::millisToWaitForConversion(uint8_t bitResolution) {
switch (bitResolution) {
case 9: return 94;
case 10: return 188;
case 11: return 375;
default: return 750;
}
}
uint16_t DallasTemperature::millisToWaitForConversion() {
return millisToWaitForConversion(bitResolution);
}
void DallasTemperature::setWaitForConversion(bool flag) {
waitForConversion = flag;
}
bool DallasTemperature::getWaitForConversion() {
return waitForConversion;
}
void DallasTemperature::setCheckForConversion(bool flag) {
checkForConversion = flag;
}
bool DallasTemperature::getCheckForConversion() {
return checkForConversion;
}
bool DallasTemperature::isConversionComplete() {
uint8_t b = _wire->read_bit();
return (b == 1);
}
void DallasTemperature::setAutoSaveScratchPad(bool flag) {
autoSaveScratchPad = flag;
}
bool DallasTemperature::getAutoSaveScratchPad() {
return autoSaveScratchPad;
}
DallasTemperature::request_t DallasTemperature::requestTemperatures() {
request_t req = {};
req.result = true;
_wire->reset();
_wire->skip();
_wire->write(STARTCONVO, parasite);
req.timestamp = millis();
if (!waitForConversion) return req;
blockTillConversionComplete(bitResolution, req.timestamp);
return req;
}
DallasTemperature::request_t DallasTemperature::requestTemperaturesByAddress(const uint8_t* deviceAddress) {
request_t req = {};
uint8_t deviceBitResolution = getResolution(deviceAddress);
if (deviceBitResolution == 0) {
req.result = false;
return req;
}
_wire->reset();
_wire->select(deviceAddress);
_wire->write(STARTCONVO, parasite);
req.timestamp = millis();
req.result = true;
if (!waitForConversion) return req;
blockTillConversionComplete(deviceBitResolution, req.timestamp);
return req;
}
DallasTemperature::request_t DallasTemperature::requestTemperaturesByIndex(uint8_t index) {
DeviceAddress deviceAddress;
getAddress(deviceAddress, index);
return requestTemperaturesByAddress(deviceAddress);
}
void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution) {
unsigned long start = millis();
blockTillConversionComplete(bitResolution, start);
}
void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution, unsigned long start) {
if (checkForConversion && !parasite) {
while (!isConversionComplete() && ((unsigned long)(millis() - start) < (unsigned long)MAX_CONVERSION_TIMEOUT)) {
yield();
}
} else {
unsigned long delayInMillis = millisToWaitForConversion(bitResolution);
activateExternalPullup();
delay(delayInMillis);
deactivateExternalPullup();
}
}
void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution, request_t req) {
if (req.result) {
blockTillConversionComplete(bitResolution, req.timestamp);
}
}
int32_t DallasTemperature::calculateTemperature(const uint8_t* deviceAddress, uint8_t* scratchPad) {
int32_t fpTemperature = 0;
// looking thru the spec sheets of all supported devices, bit 15 is always the signing bit
int32_t neg = 0x0;
if (scratchPad[TEMP_MSB] & 0x80)
neg = 0xFFF80000;
// detect MAX31850
if (deviceAddress[0] == DS1825MODEL && scratchPad[CONFIGURATION] & 0x80) {
if (scratchPad[TEMP_LSB] & 1) { // Fault Detected
if (scratchPad[HIGH_ALARM_TEMP] & 1) {
return DEVICE_FAULT_OPEN_RAW;
} else if (scratchPad[HIGH_ALARM_TEMP] >> 1 & 1) {
return DEVICE_FAULT_SHORTGND_RAW;
} else if (scratchPad[HIGH_ALARM_TEMP] >> 2 & 1) {
return DEVICE_FAULT_SHORTVDD_RAW;
} else {
return DEVICE_DISCONNECTED_RAW;
}
}
// We must mask out bit 1 (reserved) and 0 (fault) on TEMP_LSB
fpTemperature = (((int32_t)scratchPad[TEMP_MSB]) << 11)
| (((int32_t)scratchPad[TEMP_LSB] & 0xFC) << 3)
| neg;
} else {
fpTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 11)
| (((int16_t)scratchPad[TEMP_LSB]) << 3)
| neg;
}
/*
DS1820 and DS18S20 have a 9-bit temperature register.
Resolutions greater than 9-bit can be calculated using the data from
the temperature, and COUNT REMAIN and COUNT PER °C registers in the
scratchpad. The resolution of the calculation depends on the model.
While the COUNT PER °C register is hard-wired to 16 (10h) in a
DS18S20, it changes with temperature in DS1820.
After reading the scratchpad, the TEMP_READ value is obtained by
truncating the 0.5°C bit (bit 0) from the temperature data. The
extended resolution temperature can then be calculated using the
following equation:
COUNT_PER_C - COUNT_REMAIN
TEMPERATURE = TEMP_READ - 0.25 + --------------------------
COUNT_PER_C
Hagai Shatz simplified this to integer arithmetic for a 12 bits
value for a DS18S20, and James Cameron added legacy DS1820 support.
See - http://myarduinotoy.blogspot.co.uk/2013/02/12bit-result-from-ds18s20.html
*/
if ((deviceAddress[DSROM_FAMILY] == DS18S20MODEL) && (scratchPad[COUNT_PER_C] != 0)) {
fpTemperature = (((fpTemperature & 0xfff0) << 3) - 32
+ (((scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) << 7)
/ scratchPad[COUNT_PER_C])) | neg;
}
return fpTemperature;
}
#if REQUIRESALARMS
void DallasTemperature::setAlarmHandler(const AlarmHandler* handler) {
_AlarmHandler = handler;
}
void DallasTemperature::setHighAlarmTemp(const uint8_t* deviceAddress, int8_t celsius) {
// make sure the alarm temperature is within the device's range
if (celsius > 125) celsius = 125;
else if (celsius < -55) celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[HIGH_ALARM_TEMP] = (uint8_t)celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
void DallasTemperature::setLowAlarmTemp(const uint8_t* deviceAddress, int8_t celsius) {
// make sure the alarm temperature is within the device's range
if (celsius > 125) celsius = 125;
else if (celsius < -55) celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[LOW_ALARM_TEMP] = (uint8_t)celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
int8_t DallasTemperature::getHighAlarmTemp(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
return (int8_t)scratchPad[HIGH_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
int8_t DallasTemperature::getLowAlarmTemp(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
return (int8_t)scratchPad[LOW_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
void DallasTemperature::resetAlarmSearch() {
alarmSearchJunction = -1;
alarmSearchExhausted = 0;
for (uint8_t i = 0; i < 7; i++) {
alarmSearchAddress[i] = 0;
}
}
bool DallasTemperature::alarmSearch(uint8_t* newAddr) {
uint8_t i;
int8_t lastJunction = -1;
uint8_t done = 1;
if (alarmSearchExhausted)
return false;
if (!_wire->reset())
return false;
_wire->write(ALARMSEARCH);
for (i = 0; i < 64; i++) {
uint8_t a = _wire->read_bit();
uint8_t nota = _wire->read_bit();
uint8_t ibyte = i / 8;
uint8_t ibit = 1 << (i & 7);
if (a && nota)
return false;
if (!a && !nota) {
if (i == alarmSearchJunction) {
a = 1;
alarmSearchJunction = lastJunction;
} else if (i < alarmSearchJunction) {
if (alarmSearchAddress[ibyte] & ibit) {
a = 1;
} else {
a = 0;
done = 0;
lastJunction = i;
}
} else {
a = 0;
alarmSearchJunction = i;
done = 0;
}
}
if (a)
alarmSearchAddress[ibyte] |= ibit;
else
alarmSearchAddress[ibyte] &= ~ibit;
_wire->write_bit(a);
}
if (done)
alarmSearchExhausted = 1;
for (i = 0; i < 8; i++)
newAddr[i] = alarmSearchAddress[i];
return true;
}
bool DallasTemperature::hasAlarm(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
int8_t temp = calculateTemperature(deviceAddress, scratchPad) >> 7;
return (temp <= (int8_t)scratchPad[LOW_ALARM_TEMP] ||
temp >= (int8_t)scratchPad[HIGH_ALARM_TEMP]);
}
return false;
}
bool DallasTemperature::hasAlarm(void) {
DeviceAddress deviceAddress;
resetAlarmSearch();
return alarmSearch(deviceAddress);
}
void DallasTemperature::processAlarms(void) {
if (!hasAlarmHandler())
return;
resetAlarmSearch();
DeviceAddress alarmAddr;
while (alarmSearch(alarmAddr)) {
if (validAddress(alarmAddr)) {
_AlarmHandler(alarmAddr);
}
}
}
bool DallasTemperature::hasAlarmHandler() {
return (_AlarmHandler != NO_ALARM_HANDLER);
}
#endif
#if REQUIRESNEW
void* DallasTemperature::operator new(unsigned int size) {
void* p = malloc(size);
memset(p, 0, size);
return p;
}
void DallasTemperature::operator delete(void* p) {
free(p);
}
#endif
bool DallasTemperature::verifyDeviceCount(void) {
uint8_t actualCount = 0;
float temp;
requestTemperatures();
do {
temp = getTempCByIndex(actualCount);
if (temp > DEVICE_DISCONNECTED_C) {
actualCount++;
}
} while (temp > DEVICE_DISCONNECTED_C && actualCount < 255);
if (actualCount > devices) {
devices = actualCount;
begin();
return true;
}
return false;
}
void DallasTemperature::setUserData(const uint8_t* deviceAddress, int16_t data) {
// return when stored value == new value
if (getUserData(deviceAddress) == data)
return;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[HIGH_ALARM_TEMP] = data >> 8;
scratchPad[LOW_ALARM_TEMP] = data & 255;
writeScratchPad(deviceAddress, scratchPad);
}
}
void DallasTemperature::setUserDataByIndex(uint8_t deviceIndex, int16_t data) {
DeviceAddress deviceAddress;
if (getAddress(deviceAddress, deviceIndex)) {
setUserData((uint8_t*)deviceAddress, data);
}
}
int16_t DallasTemperature::getUserData(const uint8_t* deviceAddress) {
int16_t data = 0;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
data = scratchPad[HIGH_ALARM_TEMP] << 8;
data += scratchPad[LOW_ALARM_TEMP];
}
return data;
}
int16_t DallasTemperature::getUserDataByIndex(uint8_t deviceIndex) {
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return getUserData((uint8_t*)deviceAddress);
}