forked from mmasana/FACIL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_incremental.py
316 lines (284 loc) · 16.8 KB
/
main_incremental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import time
import torch
import argparse
import importlib
import numpy as np
from functools import reduce
import utils
import approach
from loggers.exp_logger import MultiLogger
from datasets.data_loader import get_loaders
from datasets.dataset_config import dataset_config
from last_layer_analysis import last_layer_analysis
from networks import tvmodels, allmodels, set_tvmodel_head_var
def main(argv=None):
tstart = time.time()
# Arguments
parser = argparse.ArgumentParser(description='FACIL - Framework for Analysis of Class Incremental Learning')
# miscellaneous args
parser.add_argument('--gpu', type=int, default=0,
help='GPU (default=%(default)s)')
parser.add_argument('--results-path', type=str, default='../results',
help='Results path (default=%(default)s)')
parser.add_argument('--exp-name', default=None, type=str,
help='Experiment name (default=%(default)s)')
parser.add_argument('--seed', type=int, default=0,
help='Random seed (default=%(default)s)')
parser.add_argument('--log', default=['disk'], type=str, choices=['disk', 'tensorboard'],
help='Loggers used (disk, tensorboard) (default=%(default)s)', nargs='*', metavar="LOGGER")
parser.add_argument('--save-models', action='store_true',
help='Save trained models (default=%(default)s)')
parser.add_argument('--last-layer-analysis', action='store_true',
help='Plot last layer analysis (default=%(default)s)')
parser.add_argument('--no-cudnn-deterministic', action='store_true',
help='Disable CUDNN deterministic (default=%(default)s)')
# dataset args
parser.add_argument('--datasets', default=['cifar100'], type=str, choices=list(dataset_config.keys()),
help='Dataset or datasets used (default=%(default)s)', nargs='+', metavar="DATASET")
parser.add_argument('--num-workers', default=4, type=int, required=False,
help='Number of subprocesses to use for dataloader (default=%(default)s)')
parser.add_argument('--pin-memory', default=False, type=bool, required=False,
help='Copy Tensors into CUDA pinned memory before returning them (default=%(default)s)')
parser.add_argument('--batch-size', default=64, type=int, required=False,
help='Number of samples per batch to load (default=%(default)s)')
parser.add_argument('--num-tasks', default=4, type=int, required=False,
help='Number of tasks per dataset (default=%(default)s)')
parser.add_argument('--nc-first-task', default=None, type=int, required=False,
help='Number of classes of the first task (default=%(default)s)')
parser.add_argument('--use-valid-only', action='store_true',
help='Use validation split instead of test (default=%(default)s)')
parser.add_argument('--stop-at-task', default=0, type=int, required=False,
help='Stop training after specified task (default=%(default)s)')
# model args
parser.add_argument('--network', default='resnet32', type=str, choices=allmodels,
help='Network architecture used (default=%(default)s)', metavar="NETWORK")
parser.add_argument('--keep-existing-head', action='store_true',
help='Disable removing classifier last layer (default=%(default)s)')
parser.add_argument('--pretrained', action='store_true',
help='Use pretrained backbone (default=%(default)s)')
# training args
parser.add_argument('--approach', default='finetuning', type=str, choices=approach.__all__,
help='Learning approach used (default=%(default)s)', metavar="APPROACH")
parser.add_argument('--nepochs', default=200, type=int, required=False,
help='Number of epochs per training session (default=%(default)s)')
parser.add_argument('--lr', default=0.1, type=float, required=False,
help='Starting learning rate (default=%(default)s)')
parser.add_argument('--lr-min', default=1e-4, type=float, required=False,
help='Minimum learning rate (default=%(default)s)')
parser.add_argument('--lr-factor', default=3, type=float, required=False,
help='Learning rate decreasing factor (default=%(default)s)')
parser.add_argument('--lr-patience', default=5, type=int, required=False,
help='Maximum patience to wait before decreasing learning rate (default=%(default)s)')
parser.add_argument('--clipping', default=10000, type=float, required=False,
help='Clip gradient norm (default=%(default)s)')
parser.add_argument('--momentum', default=0.0, type=float, required=False,
help='Momentum factor (default=%(default)s)')
parser.add_argument('--weight-decay', default=0.0, type=float, required=False,
help='Weight decay (L2 penalty) (default=%(default)s)')
parser.add_argument('--warmup-nepochs', default=0, type=int, required=False,
help='Number of warm-up epochs (default=%(default)s)')
parser.add_argument('--warmup-lr-factor', default=1.0, type=float, required=False,
help='Warm-up learning rate factor (default=%(default)s)')
parser.add_argument('--multi-softmax', action='store_true',
help='Apply separate softmax for each task (default=%(default)s)')
parser.add_argument('--fix-bn', action='store_true',
help='Fix batch normalization after first task (default=%(default)s)')
parser.add_argument('--eval-on-train', action='store_true',
help='Show train loss and accuracy (default=%(default)s)')
# gridsearch args
parser.add_argument('--gridsearch-tasks', default=-1, type=int,
help='Number of tasks to apply GridSearch (-1: all tasks) (default=%(default)s)')
# Args -- Incremental Learning Framework
args, extra_args = parser.parse_known_args(argv)
args.results_path = os.path.expanduser(args.results_path)
base_kwargs = dict(nepochs=args.nepochs, lr=args.lr, lr_min=args.lr_min, lr_factor=args.lr_factor,
lr_patience=args.lr_patience, clipgrad=args.clipping, momentum=args.momentum,
wd=args.weight_decay, multi_softmax=args.multi_softmax, wu_nepochs=args.warmup_nepochs,
wu_lr_factor=args.warmup_lr_factor, fix_bn=args.fix_bn, eval_on_train=args.eval_on_train)
if args.no_cudnn_deterministic:
print('WARNING: CUDNN Deterministic will be disabled.')
utils.cudnn_deterministic = False
utils.seed_everything(seed=args.seed)
print('=' * 108)
print('Arguments =')
for arg in np.sort(list(vars(args).keys())):
print('\t' + arg + ':', getattr(args, arg))
print('=' * 108)
# Args -- CUDA
if torch.cuda.is_available():
torch.cuda.set_device(args.gpu)
device = 'cuda'
else:
print('WARNING: [CUDA unavailable] Using CPU instead!')
device = 'cpu'
# Multiple gpus
# if torch.cuda.device_count() > 1:
# self.C = torch.nn.DataParallel(C)
# self.C.to(self.device)
####################################################################################################################
# Args -- Network
from networks.network import LLL_Net
if args.network in tvmodels: # torchvision models
tvnet = getattr(importlib.import_module(name='torchvision.models'), args.network)
if args.network == 'googlenet':
init_model = tvnet(pretrained=args.pretrained, aux_logits=False)
else:
init_model = tvnet(pretrained=args.pretrained)
set_tvmodel_head_var(init_model)
else: # other models declared in networks package's init
net = getattr(importlib.import_module(name='networks'), args.network)
# WARNING: fixed to pretrained False for other model (non-torchvision)
init_model = net(pretrained=False)
# Args -- Continual Learning Approach
from approach.incremental_learning import Inc_Learning_Appr
Appr = getattr(importlib.import_module(name='approach.' + args.approach), 'Appr')
assert issubclass(Appr, Inc_Learning_Appr)
appr_args, extra_args = Appr.extra_parser(extra_args)
print('Approach arguments =')
for arg in np.sort(list(vars(appr_args).keys())):
print('\t' + arg + ':', getattr(appr_args, arg))
print('=' * 108)
# Args -- Exemplars Management
from datasets.exemplars_dataset import ExemplarsDataset
Appr_ExemplarsDataset = Appr.exemplars_dataset_class()
if Appr_ExemplarsDataset:
assert issubclass(Appr_ExemplarsDataset, ExemplarsDataset)
appr_exemplars_dataset_args, extra_args = Appr_ExemplarsDataset.extra_parser(extra_args)
print('Exemplars dataset arguments =')
for arg in np.sort(list(vars(appr_exemplars_dataset_args).keys())):
print('\t' + arg + ':', getattr(appr_exemplars_dataset_args, arg))
print('=' * 108)
else:
appr_exemplars_dataset_args = argparse.Namespace()
# Args -- GridSearch
if args.gridsearch_tasks > 0:
from gridsearch import GridSearch
gs_args, extra_args = GridSearch.extra_parser(extra_args)
Appr_finetuning = getattr(importlib.import_module(name='approach.finetuning'), 'Appr')
assert issubclass(Appr_finetuning, Inc_Learning_Appr)
GridSearch_ExemplarsDataset = Appr.exemplars_dataset_class()
print('GridSearch arguments =')
for arg in np.sort(list(vars(gs_args).keys())):
print('\t' + arg + ':', getattr(gs_args, arg))
print('=' * 108)
assert len(extra_args) == 0, "Unused args: {}".format(' '.join(extra_args))
####################################################################################################################
# Log all arguments
full_exp_name = reduce((lambda x, y: x[0] + y[0]), args.datasets) if len(args.datasets) > 0 else args.datasets[0]
full_exp_name += '_' + args.approach
if args.exp_name is not None:
full_exp_name += '_' + args.exp_name
logger = MultiLogger(args.results_path, full_exp_name, loggers=args.log, save_models=args.save_models)
logger.log_args(argparse.Namespace(**args.__dict__, **appr_args.__dict__, **appr_exemplars_dataset_args.__dict__))
# Loaders
utils.seed_everything(seed=args.seed)
trn_loader, val_loader, tst_loader, taskcla = get_loaders(args.datasets, args.num_tasks, args.nc_first_task,
args.batch_size, num_workers=args.num_workers,
pin_memory=args.pin_memory)
# Apply arguments for loaders
if args.use_valid_only:
tst_loader = val_loader
max_task = len(taskcla) if args.stop_at_task == 0 else args.stop_at_task
# Network and Approach instances
utils.seed_everything(seed=args.seed)
net = LLL_Net(init_model, remove_existing_head=not args.keep_existing_head)
utils.seed_everything(seed=args.seed)
# taking transformations and class indices from first train dataset
first_train_ds = trn_loader[0].dataset
transform, class_indices = first_train_ds.transform, first_train_ds.class_indices
appr_kwargs = {**base_kwargs, **dict(logger=logger, **appr_args.__dict__)}
if Appr_ExemplarsDataset:
appr_kwargs['exemplars_dataset'] = Appr_ExemplarsDataset(transform, class_indices,
**appr_exemplars_dataset_args.__dict__)
utils.seed_everything(seed=args.seed)
appr = Appr(net, device, **appr_kwargs)
# GridSearch
if args.gridsearch_tasks > 0:
ft_kwargs = {**base_kwargs, **dict(logger=logger,
exemplars_dataset=GridSearch_ExemplarsDataset(transform, class_indices))}
appr_ft = Appr_finetuning(net, device, **ft_kwargs)
gridsearch = GridSearch(appr_ft, args.seed, gs_args.gridsearch_config, gs_args.gridsearch_acc_drop_thr,
gs_args.gridsearch_hparam_decay, gs_args.gridsearch_max_num_searches)
# Loop tasks
print(taskcla)
acc_taw = np.zeros((max_task, max_task))
acc_tag = np.zeros((max_task, max_task))
forg_taw = np.zeros((max_task, max_task))
forg_tag = np.zeros((max_task, max_task))
for t, (_, ncla) in enumerate(taskcla):
# Early stop tasks if flag
if t >= max_task:
continue
print('*' * 108)
print('Task {:2d}'.format(t))
print('*' * 108)
# Add head for current task
net.add_head(taskcla[t][1])
net.to(device)
# GridSearch
if t < args.gridsearch_tasks:
# Search for best finetuning learning rate -- Maximal Plasticity Search
print('LR GridSearch')
best_ft_acc, best_ft_lr = gridsearch.search_lr(appr.model, t, trn_loader[t], val_loader[t])
# Apply to approach
appr.lr = best_ft_lr
gen_params = gridsearch.gs_config.get_params('general')
for k, v in gen_params.items():
if not isinstance(v, list):
setattr(appr, k, v)
# Search for best forgetting/intransigence tradeoff -- Stability Decay
print('Trade-off GridSearch')
best_tradeoff, tradeoff_name = gridsearch.search_tradeoff(args.approach, appr,
t, trn_loader[t], val_loader[t], best_ft_acc)
# Apply to approach
if tradeoff_name is not None:
setattr(appr, tradeoff_name, best_tradeoff)
print('-' * 108)
# Train
appr.train(t, trn_loader[t], val_loader[t])
print('-' * 108)
# Test
for u in range(t + 1):
test_loss, acc_taw[t, u], acc_tag[t, u] = appr.eval(u, tst_loader[u])
if u < t:
forg_taw[t, u] = acc_taw[:t, u].max(0) - acc_taw[t, u]
forg_tag[t, u] = acc_tag[:t, u].max(0) - acc_tag[t, u]
print('>>> Test on task {:2d} : loss={:.3f} | TAw acc={:5.1f}%, forg={:5.1f}%'
'| TAg acc={:5.1f}%, forg={:5.1f}% <<<'.format(u, test_loss,
100 * acc_taw[t, u], 100 * forg_taw[t, u],
100 * acc_tag[t, u], 100 * forg_tag[t, u]))
logger.log_scalar(task=t, iter=u, name='loss', group='test', value=test_loss)
logger.log_scalar(task=t, iter=u, name='acc_taw', group='test', value=100 * acc_taw[t, u])
logger.log_scalar(task=t, iter=u, name='acc_tag', group='test', value=100 * acc_tag[t, u])
logger.log_scalar(task=t, iter=u, name='forg_taw', group='test', value=100 * forg_taw[t, u])
logger.log_scalar(task=t, iter=u, name='forg_tag', group='test', value=100 * forg_tag[t, u])
# Save
print('Save at ' + os.path.join(args.results_path, full_exp_name))
logger.log_result(acc_taw, name="acc_taw", step=t)
logger.log_result(acc_tag, name="acc_tag", step=t)
logger.log_result(forg_taw, name="forg_taw", step=t)
logger.log_result(forg_tag, name="forg_tag", step=t)
logger.save_model(net.state_dict(), task=t)
logger.log_result(acc_taw.sum(1) / np.tril(np.ones(acc_taw.shape[0])).sum(1), name="avg_accs_taw", step=t)
logger.log_result(acc_tag.sum(1) / np.tril(np.ones(acc_tag.shape[0])).sum(1), name="avg_accs_tag", step=t)
aux = np.tril(np.repeat([[tdata[1] for tdata in taskcla[:max_task]]], max_task, axis=0))
logger.log_result((acc_taw * aux).sum(1) / aux.sum(1), name="wavg_accs_taw", step=t)
logger.log_result((acc_tag * aux).sum(1) / aux.sum(1), name="wavg_accs_tag", step=t)
# Last layer analysis
if args.last_layer_analysis:
weights, biases = last_layer_analysis(net.heads, t, taskcla, y_lim=True)
logger.log_figure(name='weights', iter=t, figure=weights)
logger.log_figure(name='bias', iter=t, figure=biases)
# Output sorted weights and biases
weights, biases = last_layer_analysis(net.heads, t, taskcla, y_lim=True, sort_weights=True)
logger.log_figure(name='weights', iter=t, figure=weights)
logger.log_figure(name='bias', iter=t, figure=biases)
# Print Summary
utils.print_summary(acc_taw, acc_tag, forg_taw, forg_tag)
print('[Elapsed time = {:.1f} h]'.format((time.time() - tstart) / (60 * 60)))
print('Done!')
return acc_taw, acc_tag, forg_taw, forg_tag, logger.exp_path
####################################################################################################################
if __name__ == '__main__':
main()