forked from leetcoders/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MedianofTwoSortedArrays.h
89 lines (72 loc) · 2.68 KB
/
MedianofTwoSortedArrays.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
Author: Annie Kim, [email protected]
Date: Jul 10, 2013
Problem: Median of Two Sorted Arrays
Difficulty: Hard
Source: http://leetcode.com/onlinejudge#question_4
Notes:
There are two sorted arrays A and B of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Solution: 1. O(m+n)
2. O(log(m+n))
3. O(logm + logn)
*/
class Solution {
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
return findMedianSortedArrays_1(A, m, B, n);
}
double findMedianSortedArrays_1(int A[], int m, int B[], int n) {
int i = 0, j = 0;
int m1 = 0, m2 = 0;
int total = m + n;
for (int k = 0; k <= total / 2; ++k)
{
int a = (i == m) ? INT_MAX : A[i];
int b = (j == n) ? INT_MAX : B[j];
m1 = m2;
m2 = min(a, b);
if (a < b) i++;
else j++;
}
if (total & 0x1) return m2;
else return (m1 + m2) / 2.0;
}
double findMedianSortedArrays_2(int A[], int m, int B[], int n) {
int total = m + n;
if (total & 0x1)
return findKthSortedArrays(A, m, B, n, total / 2 + 1);
else
return (findKthSortedArrays(A, m, B, n, total / 2) + findKthSortedArrays(A, m, B, n, total / 2 + 1)) / 2;
}
double findKthSortedArrays(int A[], int m, int B[], int n, int k) {
if (m > n)
return findKthSortedArrays(B, n, A, m, k);
if (m == 0) return B[k-1];
if (k == 1) return min(A[0], B[0]);
int i = min(k / 2, m);
int j = k - i;
int a = A[i-1];
int b = B[j-1];
if (a < b) return findKthSortedArrays(A + i, m - i, B, n, k - i);
else if (a > b) return findKthSortedArrays(A, m, B + j, n - j, k - j);
else return a;
}
double findMedianSortedArrays_3(int A[], int m, int B[], int n) {
return findMedian(A, m, B, n, max(0, (m + n) / 2 - n), min(m - 1, (m + n) / 2));
}
double findMedian(int A[], int m, int B[], int n, int l, int r) {
if (l > r)
return findMedian(B, n, A, m, max(0, (m + n) / 2 - m), min(n, (m + n) / 2));
int i = (l + r) / 2;
int j = (m + n) / 2 - i;
int Ai_1 = (i == 0) ? INT_MIN : A[i-1];
int Bj_1 = (j == 0) ? INT_MIN : B[j-1];
int Ai = (i == m) ? INT_MAX : A[i];
int Bj = (j == n) ? INT_MAX : B[j];
if (Ai < Bj_1) return findMedian(A, m, B, n, i+1, r);
if (Ai > Bj) return findMedian(A, m, B, n, l, i-1);
if ((m + n) % 2 == 1) return Ai;
else return (Ai + max(Ai_1, Bj_1)) / 2.0;
}
};