-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathpreprocess_messidor.py
85 lines (66 loc) · 2.58 KB
/
preprocess_messidor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import xlrd
import zipfile
import argparse
import sys
from shutil import rmtree
from PIL import Image
from glob import glob
from os import makedirs, rename
from os.path import join, splitext, basename, exists
from lib.preprocess import resize_and_center_fundus
parser = argparse.ArgumentParser(description='Preprocess Messidor-Original data set.')
parser.add_argument("--data_dir", help="Directory where Messidor-Original resides.",
default="data/messidor")
args = parser.parse_args()
data_dir = str(args.data_dir)
# Create directories for grades.
[makedirs(join(data_dir, str(i))) for i in [0, 1, 2, 3]
if not exists(join(data_dir, str(i)))]
# Create a tmp directory for saving temporary preprocessing files.
tmp_path = join(data_dir, 'tmp')
if exists(tmp_path):
rmtree(tmp_path)
makedirs(tmp_path)
# Find shard zip files.
shards_paths = glob(join(data_dir, "*.zip"))
for shard in shards_paths:
shard_name = splitext(basename(shard))[0]
shard_unpack_dir = join(data_dir, shard_name)
# Unzip shard.
print(f"Unzipping {shard_name}...")
if exists(shard_unpack_dir):
rmtree(shard_unpack_dir)
zip_ref = zipfile.ZipFile(shard, 'r')
zip_ref.extractall(shard_unpack_dir)
zip_ref.close()
# Open annotations file for shard.
annotations_path = join(
data_dir, f"Annotation_{shard_name}.xls")
workbook = xlrd.open_workbook(annotations_path)
worksheet = workbook.sheet_by_index(0)
# Parse annotations file.
for num, row in enumerate(range(1, worksheet.nrows)):
filename = worksheet.cell(row, 0).value
grade = worksheet.cell(row, 2).value
im_path = glob(join(shard_unpack_dir, "**/{}".format(filename)),
recursive=True)[0]
# Find contour of eye fundus in image, and scale
# diameter of fundus to 299 pixels and crop the edges.
res = resize_and_center_fundus(save_path=tmp_path, image_path=im_path,
diameter=299, verbosity=0)
# Status-message.
msg = "\r- Preprocessing image: {0:>6} / {1}".format(
num+1, worksheet.nrows-1)
# Print the status message.
sys.stdout.write(msg)
sys.stdout.flush()
if res != 1:
continue
new_filename = "{0}.jpg".format(splitext(basename(im_path))[0])
# Move the file from the tmp folder to the right grade folder.
rename(join(tmp_path, new_filename),
join(data_dir, str(int(grade)), new_filename))
print()
rmtree(shard_unpack_dir)
# Clean tmp folder.
rmtree(tmp_path)