diff --git a/_problems/unit-03/B-expectation-of-a-continuous-random-variable/1.md b/_problems/unit-03/B-expectation-of-a-continuous-random-variable/1.md index cfbc127..513793d 100644 --- a/_problems/unit-03/B-expectation-of-a-continuous-random-variable/1.md +++ b/_problems/unit-03/B-expectation-of-a-continuous-random-variable/1.md @@ -1,7 +1,6 @@ --- index: 1 statement: | - Suppose outcome space $\Omega = \{1,2,3,4,5,6\}$ represents a 6-sided die, and the probability function assigns probability $1/6$ to each outcome. Let random variable $X: \Omega \rightarrow \mathbb{R}$ be defined as, - $$X(x) = \begin{cases} 1, &x \le 2\\\\ 2, &otherwise\end{cases}$$ + Suppose outcome space $\Omega = \{1,2,3,4,5,6\}$ represents a 6-sided die, and the probability function assigns probability $1/6$ to each outcome. Let random variable $X: \Omega \rightarrow \mathbb{R}$ be defined as, $$X(x) = \begin{cases} 1, &x \le 2\\\\ 2, &otherwise\end{cases}$$ Compute the pmf of $X$ ---