From 4265d28e3c65c0ffd6c92540e09c49be3a5a6da7 Mon Sep 17 00:00:00 2001 From: koohong <41971787+koohong@users.noreply.github.com> Date: Fri, 5 Jan 2024 11:59:53 -0800 Subject: [PATCH] Update 2.md --- _problems/unit-02/E-cdf-of-a-continuous-rv/2.md | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) diff --git a/_problems/unit-02/E-cdf-of-a-continuous-rv/2.md b/_problems/unit-02/E-cdf-of-a-continuous-rv/2.md index 4b2abe9..f08b68d 100644 --- a/_problems/unit-02/E-cdf-of-a-continuous-rv/2.md +++ b/_problems/unit-02/E-cdf-of-a-continuous-rv/2.md @@ -5,8 +5,4 @@ statement: | --- Sol: -Given CDF, we can find its pdf as shown below. - -$$\frac{d}{dx}[e^{\frac{-1}{x}}]=\frac{e^{frac{-1}{x}{x^2}}$$ - -and $\int_{0}^{\inf}\frac{e^{frac{-1}{x}{x^2}}dx=1$ +Given CDF, we can find its pdf by $\frac{d}{dx}[e^{\frac{-1}{x}}]=\frac{e^{frac{-1}{x}{x^2}}$ and $\int_{0}^{\inf}\frac{e^{frac{-1}{x}{x^2}}dx=1$