-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfaceland.py
144 lines (112 loc) · 4.79 KB
/
faceland.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
# @Time : 2021/1/12 上午10:10
# @Author : midaskong
# @File : faceland.py
# @Description:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
class hswish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out
class hsigmoid(nn.Module):
def forward(self, x):
out = F.relu6(x + 3, inplace=True) / 6
return out
def conv_bn(inp, oup, kernel, stride, padding=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernel, stride, padding, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True))
def group_conv_bn(inp, oup, kernel, stride, padding=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernel, stride, padding, groups=inp, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True))
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super(SeModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size // reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
'''expand + depthwise + pointwise'''
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super(Block, self).__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride,
padding=kernel_size // 2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se != None:
out = self.se(out)
out = out + self.shortcut(x) if self.stride == 1 else out
return out
class FaceLanndInference(nn.Module):
def __init__(self):
super(FaceLanndInference, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish() # 16*56*56
self.relu = nn.ReLU(inplace=True)
self.bneck1 = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 2),
Block(3, 16, 32, 16, nn.ReLU(inplace=True), None, 1),
)
self.bneck2 = nn.Sequential(
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 64, 24, nn.ReLU(inplace=True), None, 1),
Block(3, 24, 64, 24, nn.ReLU(inplace=True), None, 1),
)
self.bneck3 = nn.Sequential(
Block(3, 24, 96, 40, hswish(), SeModule(40), 2),
Block(3, 40, 96, 40, hswish(), SeModule(40), 1),
Block(3, 40, 96, 40, hswish(), SeModule(40), 1),
Block(3, 40, 128, 48, hswish(), SeModule(48), 1),
Block(3, 48, 128, 48, hswish(), SeModule(48), 1),
)
self.conv8 = nn.Conv2d(48, 48, 7, 1, 0, groups=48) # [128, 1, 1]
self.bn8 = nn.BatchNorm2d(48)
self.avg_pool1 = nn.AvgPool2d(14)
self.avg_pool2 = nn.AvgPool2d(7)
self.fc = nn.Linear(120, 196)
def forward(self, x):
x = self.hs1(self.bn1(self.conv1(x))) # [16, 56, 56]
out1 = self.bneck1(x) # 16*28*28
x = self.bneck2(out1) # 14*14*24
x1 = self.avg_pool1(x) # [24, 1, 1]
x1 = x1.view(x1.size(0), -1) # 24
x = self.bneck3(x) # [48, 7, 7]
x2 = self.avg_pool2(x) # [48, 1, 1]
x2 = x2.view(x2.size(0), -1) # 48
x3 = self.relu(self.conv8(x)) # [48, 1, 1]
x3 = x3.view(x1.size(0), -1) # 128
multi_scale = torch.cat([x1, x2, x3], 1) # 200
landmarks = self.fc(multi_scale) # (200, 196)
return landmarks