-
Notifications
You must be signed in to change notification settings - Fork 2.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Bug]: <title>Error embedding chunk {'OpenAIEmbedding': "'NoneType' object is not iterable"} #528
Comments
this is a temp hacked solution for ollama |
Thank you for replaying. I succeed in finishing the pipeline, but I am looking for solution for the bug when query with local models. |
Hi @hongyispace Did you find a solution to fix the bug when local query with local model? |
Hi I have hacked it via changing the code in graphrag/query/llm/oai/openai.python "chunck_text" method: (remove token encode, because the local llm just can embed text instead of encoded ones) def chunk_text( |
I tried to change "raphrag/query/llm/text_utils.py" wihch contain "chunk_text". New error is as follows: |
The local search with embeddings from Ollama now works. |
Consolidating alternate model issues here: #657 |
same issue encountered. |
Describe the bug
I have finished the pipeline with llm and ebedding of ollama. However, when I tried to query: python -m graphrag.query --root pg18v8 --method local "describe the types of impact craters"
The error message is:
INFO: Reading settings from pg18v8/settings.yaml
creating llm client with {'api_key': 'REDACTED,len=56', 'type': "openai_chat", 'model': 'llama3:70b-instruct-q5_K_M', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': True, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 1, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 1}
creating embedding llm client with {'api_key': 'REDACTED,len=56', 'type': "openai_embedding", 'model': 'nomic-embed-text', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/api', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': None, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 3, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 25}
Error embedding chunk {'OpenAIEmbedding': "'NoneType' object is not iterable"}
Traceback (most recent call last):
File "", line 198, in _run_module_as_main
File "", line 88, in _run_code
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/main.py", line 75, in
run_local_search(
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/cli.py", line 154, in run_local_search
result = search_engine.search(query=query)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/search.py", line 118, in search
context_text, context_records = self.context_builder.build_context(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/mixed_context.py", line 139, in build_context
selected_entities = map_query_to_entities(
^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 55, in map_query_to_entities
search_results = text_embedding_vectorstore.similarity_search_by_text(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/vector_stores/lancedb.py", line 118, in similarity_search_by_text
query_embedding = text_embedder(text)
^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 57, in
text_embedder=lambda t: text_embedder.embed(t),
^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/graphrag/query/llm/oai/embedding.py", line 96, in embed
chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/miniconda3/envs/grag/lib/python3.12/site-packages/numpy/lib/function_base.py", line 550, in average
raise ZeroDivisionError(
ZeroDivisionError: Weights sum to zero, can't be normalized
The environmental variables are:
export GRAPHRAG_LLM_MODEL="llama3:70b-instruct"
export GRAPHRAG_EMBEDDING_MODEL="nomic-embed-text"
export GRAPHRAG_LLM_API_BASE="http://localhost:11434/v1"
export GRAPHRAG_EMBEDDING_API_BASE="http://localhost:11434/api"
Any suggestion is appreciated!
Steps to reproduce
No response
Expected Behavior
No response
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: llama3:70b-instruct-q5_K_M #可以换成其他模型
model_supports_json: true # recommended if this is available for your model.
max_tokens: 4000
request_timeout: 180.0
api_base: http://localhost:11434/v1
api_version: 2024-02-15-preview
organization: <organization_id>
deployment_name: <azure_model_deployment_name>
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 1
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 1 # the number of parallel inflight requests that may be made
parallelization:
stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: nomic-embed-text #号称现在最厉害的embedding模型
api_base: http://localhost:11434/api
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 3
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
#concurrent_requests: 1 # the number of parallel inflight requests that may be made
batch_size: 4 # the number of documents to send in a single request
batch_max_tokens: 2048 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 4000
overlap: 500
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\.txt$"
cache:
type: file # or blob
base_dir: "cache"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 0
summarize_descriptions:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
community_report:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 5
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
num_walks: 10
walk_length: 40
window_size: 2
iterations: 3
random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: true
raw_entities: false
top_level_nodes: false
local_search:
text_unit_prop: 0.5
community_prop: 0.1
conversation_history_max_turns: 5
top_k_mapped_entities: 10
top_k_relationships: 10
max_tokens: 12000
global_search:
max_tokens: 12000
data_max_tokens: 12000
map_max_tokens: 1000
reduce_max_tokens: 2000
concurrency: 32
Logs and screenshots
No response
Additional Information
The text was updated successfully, but these errors were encountered: