-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_denoiser.py
225 lines (182 loc) · 9.09 KB
/
test_denoiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from architectures import get_architecture, IMAGENET_CLASSIFIERS
from datasets import get_dataset, DATASETS
from torch.nn import MSELoss, CrossEntropyLoss
from torch.optim import SGD, Optimizer, Adam
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
from train_utils import AverageMeter, accuracy, init_logfile, log
import argparse
import datetime
import numpy as np
import os
import time
import torch
toPilImage = ToPILImage()
def main(args):
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
results = {}
args.denoiser = os.path.join(os.getenv('PT_DATA_DIR', './'), args.denoiser)
checkpoint = torch.load(args.denoiser)
denoiser = get_architecture(checkpoint['arch'] ,args.dataset)
denoiser.load_state_dict(checkpoint['state_dict'])
denoiser.cuda().eval()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
args.outdir = os.path.join(os.getenv('PT_OUTPUT_DIR', './'), args.outdir)
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
test_dataset = get_dataset(args.dataset, 'test')
pin_memory = (args.dataset == "imagenet")
if args.test_subset:
subset_len = int(len(test_dataset)/100)
test_dataset, _ = torch.utils.data.random_split(test_dataset, [subset_len, len(test_dataset) - subset_len])
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
denoising_criterion = MSELoss(size_average=None, reduce=None, reduction = 'mean').cuda()
test_loss = test(test_loader, denoiser, denoising_criterion, args.noise_sd, args.print_freq, args.outdir)
print('MSE of the denoiser is {}'.format(test_loss))
results['denoising_MSE'] = test_loss
if args.clf != '':
if args.clf in IMAGENET_CLASSIFIERS:
assert args.dataset == 'imagenet'
# loading pretrained imagenet architectures
clf = get_architecture(args.clf ,args.dataset, pytorch_pretrained=True)
else:
args.clf = os.path.join(os.getenv('PT_DATA_DIR', './'), args.clf)
checkpoint = torch.load(args.clf)
clf = get_architecture(checkpoint['arch'], args.dataset)
clf.load_state_dict(checkpoint['state_dict'])
clf.cuda().eval()
classification_criterion = CrossEntropyLoss(size_average=None, reduce=None, reduction = 'mean').cuda()
clf_loss, clf_acc = test_with_classifier(test_loader, denoiser, classification_criterion, args.noise_sd, args.print_freq, clf)
print('Accuracy WITH denoiser at noise of {:.2f} is {}'.format(args.noise_sd, clf_acc))
results['clf_loss_with_denoiser'] = clf_loss
results['clf_acc_with_denoiser'] = clf_acc
clf_loss, clf_acc = test_with_classifier(test_loader, None, classification_criterion, args.noise_sd, args.print_freq, clf)
print('Accuracy WITHOUT denoiser at noise of {:.2f} is {}'.format(args.noise_sd, clf_acc))
results['clf_loss_without_denoiser'] = clf_loss
results['clf_acc_without_denoiser'] = clf_acc
return results
def test(loader: DataLoader, model: torch.nn.Module, criterion, noise_sd: float, print_freq: int, outdir: str):
"""
A function to test the denoising performance of a denoiser (i.e. MSE objective)
:param loader:DataLoader: test dataloader
:param model:torch.nn.Module: the denoiser
:param criterion: the loss function
:param noise_sd:float: the std-dev of the Guassian noise perturbation of the input
:param print_freq:int:
:param outdir:str: the output directory where sample denoised images are saved.
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
# switch to eval mode
model.eval()
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
noise = torch.randn_like(inputs, device='cuda') * noise_sd
outputs = model(inputs + noise)
loss = criterion(outputs, inputs)
# record loss
losses.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses))
pil = toPilImage(inputs[0].cpu())
image_path = os.path.join(outdir, 'clean.png')
pil.save(image_path)
pil = toPilImage(outputs[0].cpu())
image_path = os.path.join(outdir, 'denoised.png')
pil.save(image_path)
return losses.avg
def test_with_classifier(loader: DataLoader, denoiser: torch.nn.Module, criterion, noise_sd: float, print_freq: int, classifier: torch.nn.Module):
"""
A function to test the classification performance of a denoiser when attached to a given classifier
:param loader:DataLoader: test dataloader
:param denoiser:torch.nn.Module: the denoiser
:param criterion: the loss function (e.g. CE)
:param noise_sd:float: the std-dev of the Guassian noise perturbation of the input
:param print_freq:int: the frequency of logging
:param classifier:torch.nn.Module: the classifier to which the denoiser is attached
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to eval mode
classifier.eval()
if denoiser:
denoiser.eval()
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
inputs = inputs + torch.randn_like(inputs, device='cuda') * noise_sd
if denoiser is not None:
inputs = denoiser(inputs)
# compute output
outputs = classifier(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return (losses.avg, top1.avg)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', type=str, choices=DATASETS, required=True)
parser.add_argument('--denoiser', type=str, default='',
help='Path to a denoiser ', required=True)
parser.add_argument('--clf', type=str, default='',
help='Pretrained classificaiton model.', required=True)
parser.add_argument('--outdir', type=str, default='tmp_out/', help='folder to save model and training log)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--gpu', default=None, type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of noise distribution for data augmentation")
parser.add_argument('--test-subset', action='store_true',
help='evaluate only a predifined subset ~(1%) of the test set')
args = parser.parse_args()
main(args)