Skip to content
This repository has been archived by the owner on Jul 22, 2024. It is now read-only.

Latest commit

 

History

History
96 lines (87 loc) · 3.27 KB

README.md

File metadata and controls

96 lines (87 loc) · 3.27 KB

SpeedyRec on MIND dataset

This example walks through the training and prediction of SpeedyRec on MIND dataset.
After cloning this repo, you need go to this dictionary cd ./speedy_mind and conduct experiments with following commands:

Requirements

Python==3.6
transformers==4.6.0
tensforlow==1.15
scikit-learn==0.23

Preparing Data

Download data from MIND link and decompress these files. You will get three files: MINDlarge_train, MINDlarge_dev, and MINDlarge_test, then put them in the same folder, e.g., ./data/.

Script data_generation.py can help you to generate the data files which meet the need of SpeedyRec:

python data_generation.py --raw_data_path {./data or other path you save the decompressed data}

The processed data will be saved to ./data/speedy_data/.

Training

python train.py \
--pretreained_model unilm \
--pretrained_model_path {path to ckpt of unilmv2} \
--root_data_dir ./data/speedy_data/ \
--num_hidden_layers 8 \
--world_size 4 \
--lr 1e-4 \
--pretrain_lr 8e-6 \
--warmup True \
--schedule_step 240000 \
--warmup_step 1000 \
--batch_size 42 \
--npratio 4 \
--beta_for_cache 0.002 \
--max_step_in_cache 2 \
--savename speedyrec_mind 

The model will be saved to ./saved_models/, and validation will be conducted after each epoch.
The default pretrained model is UniLM v2, and you can get it from unilm repo. For other pretrained model, you need set --pretrained_model==others and give a new path for --pretrained_model_path (like roberta-base and microsoft/deberta-base, which needs to be supported by transformers).

Prediction

Run prediction using saved checkpoint:

python submission.py \
--pretrained_model_path {path to ckpt of unilmv2} \
--pretreained_model unilm \
--root_data_dir ./data/speedy_data/ \
--num_hidden_layers 8 \
--load_ckpt_name {path to your saved model} \
--batch_size 256 

It will creates a zip file:predciton.zip, which can be submitted to the leaderboard of MIND directly.

Training and prediction based on our trained model

You can download the config and the model trained by us from this link and save them in ./speedymind_ckpts.

  • Prediction
    You can run the prediction by following command:
python submission.py \
--pretrained_model_path ./speedymind_ckpts \
--pretreained_model unilm \
--root_data_dir ./data/speedy_data/ \
--num_hidden_layers 8 \
--load_ckpt_name ./speedymind_ckpts/pytorch_model.bin \
--batch_size 256 \
--news_attributes title  
  • Training
    If you want to finetune the model, set --pretrained_model_path ./speedymind_ckpts --news_attributes title and run the training command. Here is an example:
python train.py \
--pretreained_model unilm \
--pretrained_model_path ./speedymind_ckpts \
--root_data_dir ./data/speedy_data/ \
--news_attributes title \
--num_hidden_layers 8 \
--world_size 4 \
--lr 1e-4 \
--pretrain_lr 8e-6 \
--warmup True \
--schedule_step 240000 \
--warmup_step 1000 \
--batch_size 42 \
--npratio 4 \
--beta_for_cache 0.002 \
--max_step_in_cache 2 \
--savename speedyrec_mind