diff --git a/rdagent/app/qlib_rd_loop/conf.py b/rdagent/app/qlib_rd_loop/conf.py index 6db7c1c3..7ae8fc8d 100644 --- a/rdagent/app/qlib_rd_loop/conf.py +++ b/rdagent/app/qlib_rd_loop/conf.py @@ -4,12 +4,22 @@ class PropSetting(BaseSettings): """""" - scen: str = "rdagent.scenarios.qlib.experiment.factor_experiment.QlibFactorScenario" - hypothesis_gen: str = "rdagent.scenarios.qlib.factor_proposal.QlibFactorHypothesisGen" - hypothesis2experiment: str = "rdagent.scenarios.qlib.factor_proposal.QlibFactorHypothesis2Experiment" + qlib_factor_scen: str = "rdagent.scenarios.qlib.experiment.factor_experiment.QlibFactorScenario" + qlib_factor_hypothesis_gen: str = "rdagent.scenarios.qlib.factor_proposal.QlibFactorHypothesisGen" + qlib_factor_hypothesis2experiment: str = "rdagent.scenarios.qlib.factor_proposal.QlibFactorHypothesis2Experiment" qlib_factor_coder: str = "rdagent.scenarios.qlib.factor_task_implementation.QlibFactorCoSTEER" qlib_factor_runner: str = "rdagent.scenarios.qlib.task_generator.data.QlibFactorRunner" - qlib_factor_summarizer: str = "rdagent.scenarios.qlib.task_generator.feedback.QlibFactorExperiment2Feedback" + qlib_factor_summarizer: str = ( + "rdagent.scenarios.qlib.task_generator.feedback.QlibFactorHypothesisExperiment2Feedback" + ) + + # TODO: model part is not finished yet + qlib_model_scen: str = "" + qlib_model_hypothesis_gen: str = "" + qlib_model_hypothesis2experiment: str = "" + qlib_model_coder: str = "" + qlib_model_runner: str = "" + qlib_model_summarizer: str = "" evolving_n: int = 10 diff --git a/rdagent/app/qlib_rd_loop/factor.py b/rdagent/app/qlib_rd_loop/factor.py index b6bb0599..2a790597 100644 --- a/rdagent/app/qlib_rd_loop/factor.py +++ b/rdagent/app/qlib_rd_loop/factor.py @@ -6,37 +6,34 @@ load_dotenv(override=True) -# import_from from rdagent.app.qlib_rd_loop.conf import PROP_SETTING from rdagent.core.proposal import ( - Experiment2Feedback, Hypothesis2Experiment, + HypothesisExperiment2Feedback, HypothesisGen, - HypothesisSet, Trace, ) from rdagent.core.task_generator import TaskGenerator from rdagent.core.utils import import_class -scen = import_class(PROP_SETTING.scen)() +scen = import_class(PROP_SETTING.qlib_factor_scen)() -hypothesis_gen: HypothesisGen = import_class(PROP_SETTING.hypothesis_gen)(scen) +hypothesis_gen: HypothesisGen = import_class(PROP_SETTING.qlib_factor_hypothesis_gen)(scen) -hypothesis2experiment: Hypothesis2Experiment = import_class(PROP_SETTING.hypothesis2experiment)() +hypothesis2experiment: Hypothesis2Experiment = import_class(PROP_SETTING.qlib_factor_hypothesis2experiment)() qlib_factor_coder: TaskGenerator = import_class(PROP_SETTING.qlib_factor_coder)(scen) qlib_factor_runner: TaskGenerator = import_class(PROP_SETTING.qlib_factor_runner)(scen) -qlib_factor_summarizer: Experiment2Feedback = import_class(PROP_SETTING.qlib_factor_summarizer)() +qlib_factor_summarizer: HypothesisExperiment2Feedback = import_class(PROP_SETTING.qlib_factor_summarizer)() trace = Trace(scen=scen) -hs = HypothesisSet(trace=trace) for _ in range(PROP_SETTING.evolving_n): hypothesis = hypothesis_gen.gen(trace) - exp = hypothesis2experiment.convert(hs) + exp = hypothesis2experiment.convert(hypothesis, trace) exp = qlib_factor_coder.generate(exp) exp = qlib_factor_runner.generate(exp) - feedback = qlib_factor_summarizer.summarize(exp) + feedback = qlib_factor_summarizer.generateFeedback(exp, hypothesis, trace) trace.hist.append((hypothesis, exp, feedback)) diff --git a/rdagent/app/qlib_rd_loop/model.py b/rdagent/app/qlib_rd_loop/model.py index c92c1d48..c30aa08f 100644 --- a/rdagent/app/qlib_rd_loop/model.py +++ b/rdagent/app/qlib_rd_loop/model.py @@ -4,39 +4,33 @@ """ # import_from -from rdagent.app.model_proposal.conf import MODEL_PROP_SETTING +from rdagent.app.qlib_rd_loop.conf import PROP_SETTING from rdagent.core.proposal import ( - Experiment2Feedback, Hypothesis2Experiment, - HypothesisSet, + HypothesisExperiment2Feedback, Trace, ) from rdagent.core.task_generator import TaskGenerator +from rdagent.core.utils import import_class -# load_from_cls_uri +scen = import_class(PROP_SETTING.qlib_model_scen)() +hypothesis_gen = import_class(PROP_SETTING.qlib_model_hypothesis_gen)(scen) -scen = load_from_cls_uri(MODEL_PROP_SETTING.scen)() +hypothesis2experiment: Hypothesis2Experiment = import_class(PROP_SETTING.qlib_model_hypothesis2experiment)() -hypothesis_gen = load_from_cls_uri(MODEL_PROP_SETTING.hypothesis_gen)(scen) +qlib_model_coder: TaskGenerator = import_class(PROP_SETTING.qlib_model_coder)(scen) +qlib_model_runner: TaskGenerator = import_class(PROP_SETTING.qlib_model_runner)(scen) -hypothesis2task: Hypothesis2Experiment = load_from_cls_uri(MODEL_PROP_SETTING.hypothesis2task)() +qlib_model_summarizer: HypothesisExperiment2Feedback = import_class(PROP_SETTING.qlib_model_hypothesis2experiment)(scen) -task_gen: TaskGenerator = load_from_cls_uri(MODEL_PROP_SETTING.task_gen)(scen) # for implementation - -imp2feedback: Experiment2Feedback = load_from_cls_uri(MODEL_PROP_SETTING.imp2feedback)(scen) # for implementation - - -iter_n = MODEL_PROP_SETTING.iter_n - -trace = Trace() - -hypothesis_set = HypothesisSet() -for _ in range(iter_n): +trace = Trace(scen=scen) +for _ in range(PROP_SETTING.evolving_n): hypothesis = hypothesis_gen.gen(trace) - task = hypothesis2task.convert(hypothesis) - imp = task_gen.gen(task) - imp.execute() - feedback = imp2feedback.summarize(imp) - trace.hist.append((hypothesis, feedback)) + exp = hypothesis2experiment.convert(hypothesis, trace) + exp = qlib_model_coder.generate(exp) + exp = qlib_model_runner.generate(exp) + feedback = qlib_model_summarizer.generateFeedback(exp, hypothesis, trace) + + trace.hist.append((hypothesis, exp, feedback)) diff --git a/rdagent/components/proposal/factor_proposal.py b/rdagent/components/proposal/factor_proposal.py index b01c511f..cba6728b 100644 --- a/rdagent/components/proposal/factor_proposal.py +++ b/rdagent/components/proposal/factor_proposal.py @@ -10,7 +10,6 @@ Hypothesis, Hypothesis2Experiment, HypothesisGen, - HypothesisSet, Scenario, Trace, ) @@ -28,12 +27,10 @@ def __init__(self, scen: Scenario): # The following methods are scenario related so they should be implemented in the subclass @abstractmethod - def prepare_context(self, trace: Trace) -> Tuple[dict, bool]: - ... + def prepare_context(self, trace: Trace) -> Tuple[dict, bool]: ... @abstractmethod - def convert_response(self, response: str) -> FactorHypothesis: - ... + def convert_response(self, response: str) -> FactorHypothesis: ... def gen(self, trace: Trace) -> FactorHypothesis: context_dict, json_flag = self.prepare_context(trace) @@ -67,20 +64,18 @@ def __init__(self) -> None: super().__init__() @abstractmethod - def prepare_context(self, hs: HypothesisSet) -> Tuple[dict, bool]: - ... + def prepare_context(self, hypothesis: Hypothesis, trace: Trace) -> Tuple[dict, bool]: ... @abstractmethod - def convert_response(self, response: str) -> FactorExperiment: - ... + def convert_response(self, response: str, trace: Trace) -> FactorExperiment: ... - def convert(self, hs: HypothesisSet) -> FactorExperiment: - context, json_flag = self.prepare_context(hs) + def convert(self, hypothesis: Hypothesis, trace: Trace) -> FactorExperiment: + context, json_flag = self.prepare_context(hypothesis, trace) system_prompt = ( Environment(undefined=StrictUndefined) .from_string(prompt_dict["factor_hypothesis2experiment"]["system_prompt"]) .render( - scenario=hs.trace.scen.get_scenario_all_desc(), + scenario=trace.scen.get_scenario_all_desc(), experiment_output_format=context["experiment_output_format"], ) ) @@ -88,6 +83,7 @@ def convert(self, hs: HypothesisSet) -> FactorExperiment: Environment(undefined=StrictUndefined) .from_string(prompt_dict["factor_hypothesis2experiment"]["user_prompt"]) .render( + target_hypothesis=context["target_hypothesis"], hypothesis_and_feedback=context["hypothesis_and_feedback"], factor_list=context["factor_list"], RAG=context["RAG"], @@ -96,4 +92,4 @@ def convert(self, hs: HypothesisSet) -> FactorExperiment: resp = APIBackend().build_messages_and_create_chat_completion(user_prompt, system_prompt, json_mode=json_flag) - return self.convert_response(resp) + return self.convert_response(resp, trace) diff --git a/rdagent/components/proposal/prompts.yaml b/rdagent/components/proposal/prompts.yaml index e79fa70c..e979c670 100644 --- a/rdagent/components/proposal/prompts.yaml +++ b/rdagent/components/proposal/prompts.yaml @@ -21,14 +21,17 @@ factor_hypothesis2experiment: The factors are used in certain scenario, the scenario is as follows: {{ scenario }} The user will use the factors generated to do some experiments. The user will provide this information to you: - 1. The hypothesis generated in the previous steps and their corresponding feedbacks. - 2. Former proposed factors on similar hypothesis. - 3. Some additional information to help you generate new factors. + 1. The target hypothesis you are targeting to generate factors for. + 2. The hypothesis generated in the previous steps and their corresponding feedbacks. + 3. Former proposed factors on similar hypothesis. + 4. Some additional information to help you generate new factors. Please generate the output following the format below: {{ experiment_output_format }} user_prompt: |- The user has made several hypothesis on this scenario and did several evaluation on them. + The target hypothesis you are targeting to generate factors for is as follows: + {{ target_hypothesis }} The former hypothesis and the corresponding feedbacks are as follows: {{ hypothesis_and_feedback }} The former proposed factors on similar hypothesis are as follows: diff --git a/rdagent/core/experiment.py b/rdagent/core/experiment.py index b209e3c9..b7abb860 100644 --- a/rdagent/core/experiment.py +++ b/rdagent/core/experiment.py @@ -122,6 +122,8 @@ class Experiment(ABC, Generic[ASpecificTask, ASpecificImp]): def __init__(self, sub_tasks: Sequence[ASpecificTask]) -> None: self.sub_tasks = sub_tasks self.sub_implementations: Sequence[ASpecificImp] = [None for _ in self.sub_tasks] + self.based_experiments: Sequence[Experiment] = [] + self.result: object = None # The result of the experiment, can be different types in different scenarios. TaskOrExperiment = TypeVar("TaskOrExperiment", Task, Experiment) diff --git a/rdagent/core/proposal.py b/rdagent/core/proposal.py index 1b4fb923..93e20453 100644 --- a/rdagent/core/proposal.py +++ b/rdagent/core/proposal.py @@ -23,6 +23,10 @@ class Hypothesis: def __init__(self, hypothesis: str, reason: str) -> None: self.hypothesis: str = hypothesis self.reason: str = reason + + def __str__(self) -> str: + return f"""Hypothesis: {self.hypothesis} +Reason: {self.reason}""" # source: data_ana | model_nan = None @@ -30,7 +34,16 @@ def __init__(self, hypothesis: str, reason: str) -> None: # Origin(path of repo/data/feedback) => view/summarization => generated Hypothesis -class HypothesisFeedback(Feedback): ... +class HypothesisFeedback(Feedback): + def __init__(self, observations: str, hypothesis_evaluation: str, new_hypothesis: str, reason: str, decision: bool): + self.observations = observations + self.hypothesis_evaluation = hypothesis_evaluation + self.new_hypothesis = new_hypothesis + self.reason = reason + self.decision = decision + + def __bool__(self): + return self.decision ASpecificScen = TypeVar("ASpecificScen", bound=Scenario) @@ -59,19 +72,6 @@ def gen(self, trace: Trace) -> Hypothesis: """ -class HypothesisSet: - """ - # drop, append - - hypothesis_imp: list[float] | None # importance of each hypothesis - true_hypothesis or false_hypothesis - """ - - def __init__(self, trace: Trace, hypothesis_list: list[Hypothesis] = []) -> None: - self.hypothesis_list: list[Hypothesis] = hypothesis_list - self.trace: Trace = trace - - ASpecificExp = TypeVar("ASpecificExp", bound=Experiment) @@ -81,21 +81,22 @@ class Hypothesis2Experiment(ABC, Generic[ASpecificExp]): """ @abstractmethod - def convert(self, hs: HypothesisSet) -> ASpecificExp: + def convert(self, hypothesis: Hypothesis, trace: Trace) -> ASpecificExp: """Connect the idea proposal to implementation""" ... # Boolean, Reason, Confidence, etc. + class HypothesisExperiment2Feedback: """ "Generated feedbacks on the hypothesis from **Executed** Implementations of different tasks & their comparisons with previous performances""" def generateFeedback(self, ti: Experiment, hypothesis: Hypothesis, trace: Trace) -> HypothesisFeedback: """ - The `ti` should be executed and the results should be included, as well as the comparison between previous results (done by LLM). + The `ti` should be executed and the results should be included, as well as the comparison between previous results (done by LLM). For example: `mlflow` of Qlib will be included. """ - return HypothesisFeedback() + raise NotImplementedError("generateFeedback method is not implemented.") # def generateResultComparison() diff --git a/rdagent/scenarios/qlib/factor_proposal.py b/rdagent/scenarios/qlib/factor_proposal.py index 52f65de4..216d4dc8 100644 --- a/rdagent/scenarios/qlib/factor_proposal.py +++ b/rdagent/scenarios/qlib/factor_proposal.py @@ -12,7 +12,7 @@ FactorHypothesisGen, ) from rdagent.core.prompts import Prompts -from rdagent.core.proposal import HypothesisSet, Scenario, Trace +from rdagent.core.proposal import Hypothesis, Scenario, Trace prompt_dict = Prompts(file_path=Path(__file__).parent / "prompts.yaml") @@ -43,23 +43,24 @@ def convert_response(self, response: str) -> FactorHypothesis: class QlibFactorHypothesis2Experiment(FactorHypothesis2Experiment): - def prepare_context(self, hs: HypothesisSet) -> Tuple[dict | bool]: - scenario = hs.trace.scen.get_scenario_all_desc() + def prepare_context(self, hypothesis: Hypothesis, trace: Trace) -> Tuple[dict | bool]: + scenario = trace.scen.get_scenario_all_desc() experiment_output_format = prompt_dict["experiment_output_format"] hypothesis_and_feedback = ( Environment(undefined=StrictUndefined) .from_string(prompt_dict["hypothesis_and_feedback"]) - .render(trace=hs.trace) + .render(trace=trace) ) - experiment_list: List[FactorExperiment] = [t[1] for t in hs.trace.hist] + experiment_list: List[FactorExperiment] = [t[1] for t in trace.hist] factor_list = [] for experiment in experiment_list: factor_list.extend(experiment.sub_tasks) return { + "target_hypothesis": str(hypothesis), "scenario": scenario, "hypothesis_and_feedback": hypothesis_and_feedback, "experiment_output_format": experiment_output_format, @@ -67,7 +68,7 @@ def prepare_context(self, hs: HypothesisSet) -> Tuple[dict | bool]: "RAG": ..., }, True - def convert_response(self, response: str) -> FactorExperiment: + def convert_response(self, response: str, trace: Trace) -> FactorExperiment: response_dict = json.loads(response) tasks = [] for factor_name in response_dict: @@ -75,4 +76,6 @@ def convert_response(self, response: str) -> FactorExperiment: formulation = response_dict[factor_name]["formulation"] variables = response_dict[factor_name]["variables"] tasks.append(FactorTask(factor_name, description, formulation, variables)) - return FactorExperiment(tasks) + exp = FactorExperiment(tasks) + exp.based_experiments = [t[1] for t in trace.hist if t[2]] + return exp diff --git a/rdagent/scenarios/qlib/task_generator/feedback.py b/rdagent/scenarios/qlib/task_generator/feedback.py index 8fc42768..9fed7e89 100644 --- a/rdagent/scenarios/qlib/task_generator/feedback.py +++ b/rdagent/scenarios/qlib/task_generator/feedback.py @@ -1,8 +1,7 @@ # TODO: # Implement to feedback. -from rdagent.core.proposal import Experiment2Feedback +from rdagent.core.proposal import HypothesisExperiment2Feedback -class QlibFactorExperiment2Feedback(Experiment2Feedback): - ... +class QlibFactorHypothesisExperiment2Feedback(HypothesisExperiment2Feedback): ...