diff --git a/README.md b/README.md index a44d557f058b..f6f4e8c570e0 100644 --- a/README.md +++ b/README.md @@ -126,6 +126,8 @@ lightgbm-transform (feature transformation binding): https://github.com/microsof `postgresml` (LightGBM training and prediction in SQL, via a Postgres extension): https://github.com/postgresml/postgresml +`vaex-ml` (Python DataFrame library with its own interface to LightGBM): https://github.com/vaexio/vaex + Support ------- diff --git a/python-package/lightgbm/engine.py b/python-package/lightgbm/engine.py index 60a4bc8d1d61..5c73838c0f85 100644 --- a/python-package/lightgbm/engine.py +++ b/python-package/lightgbm/engine.py @@ -658,13 +658,18 @@ def cv( Returns ------- - eval_hist : dict - Evaluation history. + eval_results : dict + History of evaluation results of each metric. The dictionary has the following format: - {'metric1-mean': [values], 'metric1-stdv': [values], - 'metric2-mean': [values], 'metric2-stdv': [values], + {'valid metric1-mean': [values], 'valid metric1-stdv': [values], + 'valid metric2-mean': [values], 'valid metric2-stdv': [values], ...}. If ``return_cvbooster=True``, also returns trained boosters wrapped in a ``CVBooster`` object via ``cvbooster`` key. + If ``eval_train_metric=True``, also returns the train metric history. + In this case, the dictionary has the following format: + {'train metric1-mean': [values], 'valid metric1-mean': [values], + 'train metric2-mean': [values], 'valid metric2-mean': [values], + ...}. """ if not isinstance(train_set, Dataset): raise TypeError(f"cv() only accepts Dataset object, train_set has type '{type(train_set).__name__}'.")