From 089e6cbf1c414b0a59063cb94c33a2163677fea0 Mon Sep 17 00:00:00 2001 From: James Lamb Date: Wed, 25 Oct 2023 21:43:23 -0500 Subject: [PATCH] [ci] resolve warning in tests --- tests/python_package_test/test_engine.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/tests/python_package_test/test_engine.py b/tests/python_package_test/test_engine.py index 9a6341650e7d..e355e5ab074a 100644 --- a/tests/python_package_test/test_engine.py +++ b/tests/python_package_test/test_engine.py @@ -755,7 +755,7 @@ def test_ranking_prediction_early_stopping(): # (in our example it is simply the ordering by some feature correlated with relevance, e.g., 34) # and clicks on that document (new_label=1) with some probability 'pclick' depending on its true relevance; # at each position the user may stop the traversal with some probability pstop. For the non-clicked documents, -# new_label=0. Thus the generated new labels are biased towards the baseline ranker. +# new_label=0. Thus the generated new labels are biased towards the baseline ranker. # The positions of the documents in the ranked lists produced by the baseline, are returned. def simulate_position_bias(file_dataset_in, file_query_in, file_dataset_out, baseline_feature): # a mapping of a document's true relevance (defined on a 5-grade scale) into the probability of clicking it @@ -772,7 +772,7 @@ def get_pclick(label): return 0.9 # an instantiation of a cascade model where the user stops with probability 0.2 after observing each document pstop = 0.2 - + f_dataset_in = open(file_dataset_in, 'r') f_dataset_out = open(file_dataset_out, 'w') random.seed(10) @@ -780,19 +780,19 @@ def get_pclick(label): for line in open(file_query_in): docs_num = int (line) lines = [] - index_values = [] + index_values = [] positions = [0] * docs_num for index in range(docs_num): features = f_dataset_in.readline().split() lines.append(features) val = 0.0 for feature_val in features: - feature_val_split = feature_val.split(":") + feature_val_split = feature_val.split(":") if int(feature_val_split[0]) == baseline_feature: val = float(feature_val_split[1]) index_values.append([index, val]) index_values.sort(key=lambda x: -x[1]) - stop = False + stop = False for pos in range(docs_num): index = index_values[pos][0] new_label = 0 @@ -800,7 +800,7 @@ def get_pclick(label): label = int(lines[index][0]) pclick = get_pclick(label) if random.random() < pclick: - new_label = 1 + new_label = 1 stop = random.random() < pstop lines[index][0] = str(new_label) positions[index] = pos @@ -843,7 +843,7 @@ def test_ranking_with_position_information_with_file(tmp_path): lgb_train = lgb.Dataset(str(tmp_path / 'rank.train'), params=params) lgb_valid = [lgb_train.create_valid(str(tmp_path / 'rank.test'))] gbm_unbiased_with_file = lgb.train(params, lgb_train, valid_sets = lgb_valid, num_boost_round=50) - + # the performance of the unbiased LambdaMART should outperform the plain LambdaMART on the dataset with position bias assert gbm_baseline.best_score['valid_0']['ndcg@3'] + 0.03 <= gbm_unbiased_with_file.best_score['valid_0']['ndcg@3'] @@ -853,7 +853,7 @@ def test_ranking_with_position_information_with_file(tmp_path): file.close() lgb_train = lgb.Dataset(str(tmp_path / 'rank.train'), params=params) lgb_valid = [lgb_train.create_valid(str(tmp_path / 'rank.test'))] - with pytest.raises(lgb.basic.LightGBMError, match="Positions size \(3006\) doesn't match data size"): + with pytest.raises(lgb.basic.LightGBMError, match=r"Positions size \(3006\) doesn't match data size"): lgb.train(params, lgb_train, valid_sets = lgb_valid, num_boost_round=50)